Importation of Hybrid Human-Associated *Trypanosoma cruzi* Strains of Southern South American Origin, Colombia

Technical Appendix 1

Technical Appendix 1 Table 1. Panel of Colombian biologic clones and reference clones assembled for analysis.

Strain code	Host/vector	Department	Country*	Discrete typing unit
Colombian Clones†				
EB cl4‡	Homo sapiens neonate (suspected congenital infection)	Boyaca	Colombia	Tcll
EB cl6	Homo sapiens neonate (suspected congenital infection)	Boyaca	Colombia	Tcll
EB cl20	Homo sapiens neonate (suspected congenital infection)	Boyaca	Colombia	Tcll
PGPA2 cl6	Panstrongylus geniculatus	Casanare	Colombia	Tcll
PGPA2 cl7	Panstrongylus geniculatus	Casanare	Colombia	Tcll
PGPA2 cl10	Panstrongylus geniculatus	Casanare	Colombia	Tcll
CM17	Dasypus sp.	Carimagua	Colombia	TcIII
CM25 cl2	Dasypus novemcinctus	Carimagua	Colombia	TcIII
SLDN1 cl6	Dasypus novemcinctus	Casanare	Colombia	TcIII
TV cl9	Triatoma venosa	Boyaca	Colombia	TcIII
AACf2 cl11	Canis familiaris	Casanare	Colombia	TcVI
DA cl1	Homo sapiens adult (suspected congenital transmitter)	Boyaca	Colombia	TcVI
DA cl2	Homo sapiens adult (suspected congenital transmitter)	Boyaca	Colombia	TcVI
PG98 cl1	Panstrongylus geniculatus	Antioquia	Colombia	TcVI
PG98 cl7	Panstrongylus geniculatus	Antioquia	Colombia	TcVI
Rp540 cl4	Rhodnius prolixus	Casanare	Colombia	TcVI
Rp540 cl6	Rhodnius prolixus	Casanare	Colombia	TcVI
Rp540 cl7	Rhodnius prolixus	Casanare	Colombia	TcVI
Rp540 cl8	Rhodnius prolixus	Casanare	Colombia	TcVI
Rp540 cl9	Rhodnius prolixus	Casanare	Colombia	TcVI
VS cl6	Homo sapiens neonate (suspected congenital infection)	Boyaca	Colombia	TcVI
VS cl7	Homo sapiens neonate (suspected congenital infection)	Boyaca	Colombia	TcVI
VS cl8	Homo sapiens neonate (suspected congenital infection)	Boyaca	Colombia	TcVI
VS cl10	Homo sapiens neonate (suspected congenital infection)	Boyaca	Colombia	TcVI
Reference Clones§				
CBB cl2	Homo sapiens	Tulahuén	Chile	Tcll
Chaco23 col4	Triatoma infestans	Pr. Hayes	Paraguay	Tcll
Esm cl3	Homo sapiens	São Felipe	Brazil	Tcll
IVV cl4	Homo sapiens	Cuncumen	Chile	Tcll
Pot7a cl1	Triatoma infestans	San Martin	Paraguay	Tcll
Pot7b cl5	Triatoma infestans	San Martin	Paraguay	Tcll

Strain code	Host/vector	Department	Country*	Discrete typing unit
Rita cl5	Homo sapiens	São Felipe	Brazil	Tcll
T665 cl1	Triatoma infestans	Pr. Hayes	Paraguay	Tcll
Tu18 cl2	Triatoma infestans	Tupiza	Bolivia	Tcll
85/847 cl2	Dasypus novemcinctus	Alto Beni	Bolivia	TcIII
ARMA13 cl1	Dasypus novemcinctus	Campo Lorro	Paraguay	TcIII
ARMA18 cl3	Dasypus novemcinctus	Campo Lorro	Paraguay	TcIII
JA2 cl2	Monodelphis sp.	Amazonas	Brazil	TcIII
M5631 cl5	Dasypus novemcinctus	Marajo	Brazil	TcIII
M6421 cl6	Homo sapiens	Belém	Brazil	TcIII
SABP19 cl1	Triatoma infestans	Vitor	Peru	TcIII
X109/2	Canis familiaris	Makthlawaiya	Paraguay	TcIII
X9/3	Canis familiaris	Makthlawaiya	Paraguay	TcIII
92.80 cl2	Homo sapiens	Santa Cruz	Bolivia	TcV
Bug 2148 cl1	Triatoma infestans	Rio Grande do Sul	Brazil	TcV
Chaco2 cl3	Triatoma infestans	Chaco	Paraguay	TcV
PAH179 cl5	Homo sapiens	Chaco	Argentina	TcV
Para4 cl3	Triatoma infestans	Paraguari	Paraguay	TcV
Para6 cl4	Triatoma infestans	Paraguari	Paraguay	TcV
Sc43 cl1	Triatoma infestans	Santa Cruz	Bolivia	TcV
Vinch101 cl1	Triatoma infestans	Limari	Chile	TcV
Chaco17 col1	Triatoma infestans	Chaco	Paraguay	TcVI
CL Brener	Triatoma infestans	Rio Grande do Sul	Brazil	TcVI
EPV20–1 cl1	Triatoma infestans	Chaco	Argentina	TcVI
LHVA cl4	Triatoma infestans	Chaco	Argentina	TcVI
P251 cl7	Homo sapiens	Cochabamba	Bolivia	TcVI
Tula cl2	Homo sapiens	Tulahuén	Chile	TcVI
VFRA1 cl1	Triatoma infestans	Francia	Chile	TcVI

*References (1–5) describe the different geographic distributions, host/vector associations, and transmission cycles of *T. cruzi* DTUs in Colombia.

†Colombian clones were assigned to DTU-level by PCR amplification of the *SL-IR, 24α rDNA* and *18S rDNA* subunits according to (*6*). Putative hybrid strains were identified by either a double *24α rDNA* amplicon (125 and 140 bp) (TcV) or single *24α rDNA* amplicon (140 bp) and amplification of the A10 fragment of the *18S rDNA* subunit (TcVI) (525 or 630 bp), and confirmed by sequencing glucose-6-phosphate isomerase (*GPI*), as previously described (*6*).

‡Indicates multiple biologic clones derived from a single parasite strain.

§Reference clones were assigned to DTU-level using a triple-marker assay described by Lewis et al. (7).

	Housekeeping gene																												
Т.	Total			GPX				GTP			1	Met-II			T	cAPX			Т	сMPX			nN	/LST†			mtN	MLST‡	
cruzi	no.	VS	ST	TE	DP	VS	ST	ΤE	DP	VS	ST	TE	DP	VS	ST	ΤE	DP	V	ST	ΤE	DP	VS	ST	TE	DP	VS	ST	TE	DP
DTU	isolates																	S											
Tcll	15 [6]	4	6	1.5	0.4	2	3	1.5	0.2	5	6	1.2	0.4	2 [0]	3	1.5	0.2	8	4	0.5	0.27	21	10	0.48	0.67	46	7	0.15	0.47
		[0]	[1]	[0]	[0.17]	[0]	[1]	[0]	[0.17]	[0]	[1]	[0]	[0.17]		[1]	[0]	[0.17]	[0]	[1]	[0]	[0.17]	[0]	[1]	[0]	[0.17]	[25]	[3]	[0.12]	[0.5]
TcIII	13 [4]	10	8	0.8	0.62	2	3	1.5	0.23	10	7	0.7	0.54	4 [3]	5	1.25	0.38	1	3	3.0	0.23	27	13	0.48	1.0	107	10	0.093	0.77
		[4]	[3]	[0.75]	[0.75]	[1]	[2]	[2.0]	[0.5]	[5]	[3]	[0.6]	[0.75]		[3]	[1.0]	[0.75]	[1]	[2]	[2.0]	[0.5]	[13]	[4]	[0.31]	[1.0]	[80]	[4]	[0.05]	[1.0]
TcV	8 [0]	0	1	0	0.125	0	1	0	0.125	17	2	0.12	0.25	9	4	0.44	0.5	5	2	0.4	0.25	31	5	0.16	0.63	6	8	1.33	1
TcVI	21 [14]	10	4	0.4	0.19	5	3	0.6	0.14	14	4	0.29	0.19	11	7	0.64	0.33	5	5	1.0	0.24	42	16	0.38	0.76	26	9	0.35	0.43
		[2]	[3]	[1.5]	[0.21]	[5]	[3]	[0.6]	[0.21]	[0]	[1]	[0]	[0.07]	[11]	[4]	[0.36]	[0.29]	[0]	[1]	[0]	[0.07]	[12]	[9]	[0.75]	[0.86]	[26]	[7]	[0.27]	[0.5]

Technical Appendix 1 Table 2. Intra-lineage diversity and properties of nuclear and mitochondrial MLST schemes*

*Nos. in square brackets represent strains from Columbia. DP, no. of genotypes identified per total no. of isolates; DTU, discrete typing unit; MLST, multilocus sequence typing; mtMLST, mitochondrial MLST scheme, nMLST, nuclear MLST scheme, ST, no. of genotypes; TE, no. of genotypes identified per polymorphic site; VS, no. of variable sites.

†Based on 5 concatenated loci.

‡Based on 10 concatenated loci.

Technical Appendix 1 Table 3. Panel of microsatellite loci and primers employed in this study*

Chromosome	Primer code	Repeat type	Forward/reverse primer $(5' \rightarrow 3')$
6	6529(CA) _a	(CA) _n	TGTGAAATGATTTGACCCGA
			AGAGTCACGCCGCAAAGTAT
6	6529(TA) _b	(TA) _n	TGAAGGAGATTCTCTGCGGT
			CTCTCATCTTTGTTGTGTCCG
6	mclf10	(CA) _n A(CA) _n	GCGTAGCGATTCATTTCC
			ATCCGCTACCACTATCCAC
10	6855(TA)(GA)	(TA) _n (GA) _n	TGTGATCAACGCGCATAAAT
			TTCCATTGCCTCGTTTTAGA
15	11863(CA)	(CA) _n	AGTTGACATCCCCAAGCAAG
			CCCTGATGCTGCAGACTCTT
19	10101(TA)	(TA) _n	AACCCGCGCAGATACATTAG
			TTCATTTGCAGCAACACACA
24	8741(TA)	(TA) _n	TGTAACGGTAGGTCTCAATTCG
			TTGCACTTGTGTATCTCGCC
27	10101(TC)	(TC) _n	CGTACGACGTGGACACAAAC
			ACAAGTGGGTGAGCCAAAAG
27	10101(CA) _c	(CA) _n	GTGTCGTTGCTCCCAAACTC
			AAACTTGCCAAATGTGAGGG
27	10101(CA) _a	(CA) _n	GTCGCCATCATGTACAAACG
			CTGTTGGCGAATGGTCATAA
34	6559(TC)	(TC) _n	CGCTCTCAAAGGCACCTTAC
			ATATGGACGCGTAGGAGTGC
37	10187(TTA)	(TTA) _n	GAGAGAGATTCGGAAACTAATAGC
			CATGTCCCTTCCTCCGTAAA
37	10187(CA)(TA)	(CA) _n (TA) _n	CATGTCATTAAGTGGCCACG
			GCACATGTTGGTTGTTGGAA
37	10187(TA)	(TA) _n	AGAAAAAGGTTTACAACGAGCG

Chromosome	Primer code	Repeat type	Forward/reverse primer $(5' \rightarrow 3')$
			CGATGGAGAACGTGAAACAA
37	10187(GA)	(GA) _n	GTCACACCACTAGCGATGACA
			ACTGCACAATACCCCCTTTG
37	TcUn4	Unknown	ATGCTCCGCAACATATTACTCA
			GTCGAGCTTCTGTTGTTCCC
39	6925(TG) _b	(TG) _n	GAAACGCACTCACCCACAC
			GGTAGCAACGCCAAACTTTC
39	7093(TC)	(TC) _n	CCAACATTCAACAAGGGAAA
			GCATGAATATTGCCGGATCT
39	6925(CT)	(CT) _n	CATCAAGGAAAAACGGAGGA
			CGGTACCACCTCAAGGAAAG
39	7093(TA) _c	(TA) _n	CGTGTGCACAGGAGAGAAAA
			CGTTTGGAGGAGGATTGAGA
39	6925(TG)a	(TG) _n	TCGTTCTCTTTACGCTTGCA
			TAGCAGCACCAAACAAACG
39	7093(TCC)	(TCC) _n	AGACGTTCATATTCGCAGCC
			AGCCACATCCACATTTCCTC
40	11283(TCG)	(TCG) _n	ACCACCAGGAGGACATGAAG
			TGTACACGGAACAGCGAAG
40	11283(TA) _b	(TA) _n	AACATCCTCCACCTCACAGG
			TTTGAATGCGAGGTGGTACA
41	10359(CA)(GA)	(CA) _n (GA) _n	AGTCCTACTGCCTCCTTGCA
			CTGTTGGCGAATGGTCATAA

^{*}A possible confounder that must be considered during data interpretation is that due to the high mutation rate of microsatellites, potentially as high as 1/1,000 cell divisions (8), and between different loci, some of the length variation observed may be de novo, arising during parasite isolation/culturing, not during natural strain evolution and transmission.

References

- 1. Ramírez JD, Turriago B, Tapia-Calle G, Guhl F. Understanding the role of dogs (*Canis lupus familiaris*) in the transmission dynamics of *Trypanosoma cruzi* genotypes in Colombia. Vet Parasitol. 2013;196:216–9. <u>PubMed http://dx.doi.org/10.1016/j.vetpar.2012.12.054</u>
- 2. Ramírez JD, Guhl F, Rendon LM, Rosas F, Marin-Neto JA, Morillo CA. Chagas cardiomyopathy manifestations and *Trypanosoma cruzi* genotypes circulating in chronic Chagasic patients. PLoS Negl Trop Dis. 2010;4:e899. <u>PubMed</u> <u>http://dx.doi.org/10.1371/journal.pntd.0000899</u>
- 3. Zafra G, Mantilla JC, Valadares HM, Macedo AM, Gonzalez CI. Evidence of *Trypanosoma cruzi* II infection in Colombian chagasic patients. Parasitol Res. 2008;103:731–4. <u>PubMed http://dx.doi.org/10.1007/s00436-008-1034-0</u>

- 4. Mantilla JC, Zafra GA, Macedo AM, Gonzalez CI. Mixed infection of *Trypanosoma cruzi* I and II in a Colombian cardiomyopathic patient. Hum Pathol. 2010;41:610–3. <u>PubMed http://dx.doi.org/10.1016/j.humpath.2009.11.005</u>
- 5. Ramírez JD, Montilla M, Cucunubá ZM, Floréz AC, Zambrano P, Guhl F. Molecular epidemiology of human oral Chagas disease outbreaks in Colombia. PLoS Negl Trop Dis. 2013;7:e2041. <u>PubMed http://dx.doi.org/10.1371/journal.pntd.0002041</u>
- 6. Guhl F, Ramírez JD. Retrospective molecular integrated epidemiology of Chagas disease in Colombia. Infect Genet Evol. 2013;20:148–54. <u>PubMed http://dx.doi.org/10.1016/j.meegid.2013.08.028</u>
- 7. Lewis MD, Ma J, Yeo M, Carrasco HJ, Llewellyn MS, Miles MA. Genotyping of *Trypanosoma cruzi*: systematic selection of assays allowing rapid and accurate discrimination of all known lineages. Am J Trop Med Hyg. 2009;81:1041–9. <u>PubMed http://dx.doi.org/10.4269/ajtmh.2009.09-0305</u>
- Brinkmann B, Klintschar M, Neuhuber F, Huhne J, Rolf B. Mutation rate in human microsatellites: influence of the structure and length of the tandem repeat. Am J Hum Genet. 1998;62:1408–15. <u>PubMed http://dx.doi.org/10.1086/301869</u>

Technical Appendix Figure 1. Unrooted Neighbor-Joining tree based on five concatenated diploid nuclear MLST sequences. For each isolate, nuclear diploid sequence data were concatenated in order of their relative chromosomal positions (Met-II, GTP, TcMPX, TcGPX and TcAPX, on chromosomes 6, 12, 22, 35 and 36, respectively). In MLSTest, phylogenetic incongruence between loci was assessed using the BIO-Neighbor Joining Incongruence Length Difference test (BIONJ-ILD) and evaluated by a permutation test with 1,000 replicates. A final Neighbor-Joining tree was constructed and statistical support was calculated as the mean across 1,000 randomizations and those >70% are shown for relevant nodes. Branch colors indicate isolate DTU (TcII, TcIII, TcV or TcVI). Colombian strain labels are underlined.

Technical Appendix Figure 2. Maximum-Likelihood tree constructed from Met-II haplotypes. Haplotypes for each nuclear gene were inferred using PHASE v2.1 software, which utilizes a modified Markov chain Monte Carlo (MCMC) algorithm to identify all unambiguous haplotypes within a population, i.e., those observed in strains which are homozygous at all variable sites or heterozygous at only a single polymorphic site.

Haplotypes in the remaining isolates, which are heterozygous at multiple sites (and therefore of ambiguous phase), are then estimated and a probability of uncertainty assigned to each phase call (latterly confirmed by PCR cloning if p<0.95). Maximum-Likelihood topologies were constructed using haplotypes for each individual nuclear locus. The phylogeny generated for Met-II, the most polymorphic target, is given as an example above. The most appropriate nucleotide substitution model was TrNef+G (three substitution rate categories) based on the AIC. Statistical support for major clades is given as equivalent bootstraps and posterior probabilities from consensus Maximum-Likelihood (1,000 pseudo-replicates) and Bayesian trees (based on the HKY+G model), respectively. Branch colors indicate isolate DTU (TcII, TcIII, TcV or TcVI). Colombian strain labels are underlined.