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Abstract—This paper proposes a necessary condition for power
flow insolvability in power distribution systems with distributed
generators (DGs). We show that the proposed necessary condition
indicates the impending singularity of the Jacobian matrix and
the onset of voltage instability. We consider different operation
modes of DG inverters, e.g., constant-power and constant-current
operations, in the proposed method. A new index based on
the presented necessary condition is developed to indicate the
distance between the current operating point and the power
flow solvability boundary. Compared to existing methods, the
operating condition-dependent critical loading factor provided
by the proposed condition is less conservative and is closer to
the actual power flow solution space boundary. The proposed
method only requires the present snapshots of voltage phasors to
monitor the power flow insolvability and voltage stability. Hence,
it is computationally efficient and suitable to be applied to a
power distribution system with volatile DG outputs. The accuracy
of the proposed necessary condition and the index is validated
by simulations on a distribution test system with different DG
penetration levels.

Index Terms—Power flow analysis, power distribution systems,
distributed generators, power system modeling, Wirtinger calcu-
lus.

I. INTRODUCTION

THE increasing penetration of distributed generators (DGs)
and the appearance of power electronic loads has im-

posed new challenges to the modeling, operation, and con-
trol of power distribution systems. The traditional analysis
and operation paradigm of distribution systems needs to be
changed to accommodate these new types of generators and
loads. The ability to assess and maintain the security margins
within the operational context of the growing deployment of
DGs is important to modernized power distribution systems.
The solvability of power flow equations is a desirable metric to
indicate the security margins of power systems [1]. This paper
provides a necessary condition for power flow insolvability,
i.e., a sufficient condition for power flow solvability, which
can be used for the fast online assessment of static voltage
stability of a power distribution system with a high penetration
of inverter-interfaced DGs.
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Because of the nonlinear nature of power flow equations,
they are typically solved by Newton-type numerical tech-
niques. Many conditions have been proposed to guarantee
the existence of power flow solutions. The study in [1]
develops a Newton-Raphson-based algorithm to quantify the
degree of insolvability by calculating the distance between
the desired operating point and the closest solvable operating
point. Reference [2] investigates the conditions under which
the unique and operationally acceptable solutions exist for the
decoupled active and reactive power flow model. Fixed-point
theorems are applied to derive sufficient conditions for the
existence of unique power flow solution in [3] and [4]. In
[5], the power flow solvability problem is formulated as a
nonconvex optimization problem. In order to derive a sufficient
condition for system insolvability the original problem needs
to be convexified so that efficient algorithms can be applied
to find the global optimum solution. Semidefinite relaxation
technique is thus applied to convert the problem into a convex
one, and a sufficient condition for system insolvability is
derived. Reference [6] proves the existence and uniqueness of
power flow solutions in radial distribution networks through
iterative methods. Reference [7] presents a necessary condition
for power flow insolvability and demonstrates that at least
one branch must reach its static transfer stability limit before
the singularity of Jacobian matrix is reached. A recent work
[8] proposes a multi-bus short-circuit ratio to quantify the
stress the grid is under. Qualitatively it is similar to the
condition in [3], but instead of separating the network from
the loading, it combines them in a matrix-vector product. The
integration of DGs further complicates the problems of power
flow solvability and voltage stability. Studies have shown that
voltage stability issues do exist in distribution networks [9],
[10], [11].

This paper investigates the power flow solvability in a
power distribution system with DGs. We propose a necessary
condition for power flow insolvability due to saddle-node bi-
furcation. A saddle-node bifurcation occurs when two system
equilibrium points coalesce and annihilate each other under
slow parameter changes [12], [13]. The saddle-node bifurca-
tion phenomenon that we are interested in is concerned with
the disappearance of normal power system operating points as
system stresses under gradual load increase. As demonstrated
in previous results [14] the bifurcation points are irrelevant to
load dynamics and correspond to points where solutions of the
algebraic power flow equations are lost. A detailed theoretical
proof shows that the proposed condition can be used to analyze
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a power distribution system with DGs that operate in different
modes, e.g., constant-power and constant-current modes [15],
[16], where we assume that for these operation modes, the
real and imaginary parts of power/current are given. Based on
the necessary condition, we design a new index to monitor
the operating condition of a distribution system with a high
DG penetration level, which can provide an accurate precursor
to system overloading, when the generators are modeled as
constant-current and/or constant-power sources. In comparison
with existing methods, the proposed method can provide
an accurate assessment which is less conservative, closer to
the actual power flow solvability boundary and adaptive to
the present operating point. The calculation of the proposed
necessary condition and index only requires a snapshot of
the present bus voltage and current. In addition, the proposed
method requires a small computation effort, which makes it
ideal for real-time applications.

The remainder of this paper is organized as follows. Section
II introduces the power distribution system model and the pro-
posed necessary condition. Section III provides the theoretical
proof for our proposed condition on power distribution systems
with DGs. In Section IV, the numerical results are provided.
Section V discusses the simulation results and the physical
implication of the proposed index. Section VI concludes the
paper with major findings.

II. DISTRIBUTION SYSTEM MODEL AND PROPOSED
NECESSARY CONDITION

We conduct a per-phase analysis to a power distribution
system with n + 1 buses. The line section between buses i
and k in the system is weighted by its complex admittance
yik := 1/zik = gik + jbik.

It is assumed that the system contains a single substation
which is modeled as a voltage-regulated source, i.e., the slack
bus [9]. The phase angle of the slack bus is fixed as a reference.
Without loss of generality, we assume the slack bus has a
voltage phasor VS = 1∠0◦. In addition, the system has g DGs
and l = n − g loads. Tie buses that neither inject nor absorb
power are assumed to be eliminated via standard methods such
as that in [17]. Let the set of DG buses be G = {1, . . . , g} and
the set of load buses be L = {g + 1, . . . , n}. For PQ buses,
the injected power is given by Si = Pi + jQi,∀i ∈ {G, L}.

The system can be represented by the following equation[
IS
I

]
=

[
YSS YSL
YLS YLL

] [
VS
V

]
(1)

where IS ∈ C1 is the slack bus current, I = ID + jIQ ∈ Cn

is the vector of generator and load currents, and V ∈ Cn is
the vector of generator and load voltages. The polarity of the
currents is assumed to be out of the network through the buses.
We obtain from (1) that

V = −Y −1LL YLSVS + Y −1LL I (2)

Define the vector of equivalent voltage to be E :=
−Y −1LL YLSVS and the impedance matrix to be Z := −Y −1LL .
With the definitions, (2) can be rewritten as

V = E − ZI (3)

Given the bus power injection vector S, the vectors of
voltage and current are related by

S = diag(I∗)V = diag(I∗)E − diag(I∗)ZI (4)

where I∗ is the vector of complex conjugate of I and diag(·)
denotes the diagonal matrix whose diagonal elements are the
entries of the vector. The elements in (4) can be written as

Ph = Re
(
I∗hEh − I∗h

∑n

i=1
ZhiIi

)
, (5a)

Qh = Im
(
I∗hEh − I∗h

∑n

i=1
ZhiIi

)
, (5b)

where h ∈ {G,L} is either load bus or constant-power DG
bus. Equations (5a)–(5b) define the power flow equations of
the distribution system parameterized by bus current injections
in rectangular coordinates. The adoption of current injections
as state vectors can facilitate our derivation of the necessary
condition.

The power flow Jacobian of the model in (5a)–(5b) is
defined as

JR =

[
∂P/∂ID ∂P/∂IQ
∂Q/∂ID ∂Q/∂IQ

]
. (6)

The singularity of the conventional power flow Jacobian
matrix—The Jacobian matrix whose power flow equations are
parameterized by bus voltage phasors in polar coordinates—is
commonly used as a necessary condition to indicate system
loadability limit, which in turn marks the onset of voltage
instability for a system with PQ buses [18, Ch. 7]. Singularity
of (6) coincides with that of the conventional Jacobian matrix
Jconv due to the chain rule,

Jconv = JR
[
∂ID/∂|V | ∂ID/∂θ
∂IQ/∂|V | ∂IQ/∂θ

]
(7)

where |V | and θ are vectors that represent element-wise mag-
nitudes and angles of the voltage vector V , i.e., |V |i := |Vi|,
θi := ∠Vi. Thus the singularity of (6) can be used as an
indicator of voltage instability.

We propose the following necessary condition for the sin-
gularity of (6),

∃h ∈ {L,G} such that |Vh| ≤
n∑

i=1

|ZhiIi|, (8)

where h is either load bus or constant-power DG bus. The
necessary condition (8) relates to the singularity of the Jaco-
bian matrix (6). The next step is to show that (6) is always
non-singular unless condition (8) is satisfied.

Based on the necessary condition (8), an index that measures
the criticality of system loading condition is proposed. The
index is called C-index, and is defined as

Ch =
|Vh|∑n

i=1 |ZhiIi|
, h ∈ {L,G} (9)

The system-wide C-index is defined as C = min{Ch}. The
system loadability limit is reached only if C < 1.
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III. MAIN RESULT IN DISTRIBUTION SYSTEM WITH DGS

In classic power flow analysis, voltages are usually repre-
sented in polar coordinates, power is represented in rectangular
coordinates, and Jacobian matrices are represented as real-
valued matrices. As our subsequent formulation shows, the
adoption of current injections as state variables in the power
flow formulation relates the entries of power flow Jacobian
with voltages, which can assist our analysis. We would like
to demonstrate our approach on power power distribution
networks with DGs by expressing power injections by currents
as in (4) and forming the power flow Jacobian matrix by taking
partial derivatives as in (6). However, the problem with this
approach is that the entries in the Jacobian matrix do not have
direct physical interpretations in an AC network, which makes
it difficult to draw connections between (8) and the singularity
of Jacobian matrix.

To solve the above mentioned challenge, we propose to
formulate power flow Jacobian as a complex matrix via
Wirtinger Calculus [19], [20].

A. Wirtinger Calculus

Given a complex function f = u(x, y)+ jv(x, y) : C→ C,
f is complex-differentiable (C-differentiable) if it satisfies the
Cauchy-Riemann condition, i.e.,

∂u

∂x
=
∂v

∂y
,

∂u

∂y
= −∂v

∂x
(10)

Based on the condition, it can be verified that power flow
equations are generally not C-differentiable. Specifically, com-
plex conjugation g(z) = z∗ = x − jy is not C-differentiable
as

1 =
∂u

∂x
6= ∂v

∂y
= −1 (11)

Given a complex function f : C → C, we define the
function F : R2 → C as F (x, y) = U(x, y) + jV (x, y) =
f(x+ jy). The function f is said to be R-differentiable if

∂U

∂x
,

∂U

∂y
,

∂V

∂x
,

∂V

∂y
(12)

all exist.
Assume f is R-differentiable, the total derivative of F is

given by

dF =

(
∂U(x, y)

∂x
+ j

∂V (x, y)

∂x

)
dx

+

(
∂U(x, y)

∂y
+ j

∂V (x, y)

∂y

)
dy

=
∂F (x, y)

∂x
dx+

∂F (x, y)

∂y
dy (13)

We define

dz = dx+ jdy (14a)
dz∗ = dx− jdy (14b)

Then the two differentials dx and dy are solved for as

dx =
1

2
(dz + dz∗) (15a)

dy =
j

2
(dz∗ − dz) (15b)

Substituting (15) into (13) and rearranging terms gives

dF =
1

2

∂F

∂x
(dz + dz∗) +

j

2

∂F

∂y
(dz∗ − dz)

=
1

2

(
∂F

∂x
− j ∂F

∂y

)
dz +

1

2

(
∂F

∂x
+ j

∂F

∂y

)
dz∗ (16)

Motivated by the above formulation, we introduce the ‘com-
plex partial differential’ operators as

∂

∂z
=

1

2

(
∂

∂x
− j ∂

∂y

)
(17a)

∂

∂z∗
=

1

2

(
∂

∂x
+ j

∂

∂y

)
(17b)

Based on the definition, it is easy to verify that the differential
operators of the conjugate function f∗(z) satisfy

∂f∗(z)

∂z
=

(
∂f(z)

∂z∗

)∗
(18a)

∂f∗(z)

∂z∗
=

(
∂f(z)

∂z

)∗
(18b)

With the above definitions, the differential df can be defined
as

df =
∂f(z)

∂z
dz +

∂f(z)

∂z∗
dz∗ (19)

Remark 1. Notice that (19) is defined formally. However, from
a geometrical point of view [21], df is a complex-valued
differential one-form on C. That is, it is an R-linear operator
at z from the tangent space TzC ∼= C to C. With z : C → C
and z∗ : C→ C as identity and complex conjugate functions
respectively, dz and dz∗ are also one-forms and they form
a basis for the complexified cotangent space at every point
z. The operators ∂

∂z and ∂
∂z∗ are vectors on the complexified

tangent space at every point z and they form a basis which is
dual to the basis {dz,dz∗}. For instance,

dz

(
∂

∂z

)
=

1

2
(dx+ jdy)

(
∂

∂x
− j ∂

∂y

)
=

1

2

(
dx

∂

∂x
+ dy

∂

∂y

)
= 1 (20)

The various operators can also be derived by noting the iso-
morphism between the real vector space R2 and the complex
vector space C [22].

B. Application to Power Flow Analysis

Given a power distribution system with n+1 buses, in which
there are n PQ buses and one slack bus. we may define the
complex power flow Jacobian as

JZ =

[
∂S/∂I ∂S/∂I∗

∂S∗/∂I ∂S∗/∂I∗

]
(21)

Notice that the matrix is complex and the dimension of the
matrix is 2n× 2n, i.e., JZ ∈ C2n×2n. We have the following
equation based on definitions of the differentials[

dS
dS∗

]
= JZ

[
dI
dI∗

]
(22)
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The next theorem shows that the determinant of the new
Jacobian matrix defined in (21) and the original one given in
(6) are identical since they are the same linear operator under
two different bases.

Theorem 1. Given a power system with n PQ buses and one
slack bus, the determinant of the complex power flow Jacobian
(21) and that of the Jacobian (6) are identical, i.e., det JZ =
det JR.

Proof. Define the matrix T as

T =

[
1
2I

1
2I

− j
2I

j
2I

]
(23)

where I is an n× n identity matrix.
It is known from section III-A that for a PQ bus i,

dPi =
1

2
(dSi + dS∗i ) (24a)

dQi = −
j

2
(dSi − dS∗i ) (24b)

from which we have [
dP
dQ

]
= T

[
dS
dS∗

]
(25)

Similarly, [
dID
dIQ

]
= T

[
dI
dI∗

]
(26)

Substituting (25)–(26) into (22) and rearranging terms gives[
dP
dQ

]
= TJZT−1

[
dID
dIQ

]
(27)

We notice that the matrix TJZT−1 is simply the Jacobian
matrix defined in (6). That is, the two matrices are similar as

JR = TJZT−1 (28)

Based on the result from matrix analysis we have

det JR = det(TJZT−1) = det JZ . (29)

With Theorem 1, the voltage stability of a power system can
now be examined by checking the singularity of the complex
Jacobian matrix (21). To explore its properties, we write the
submatrices of (21) explicitly as

∂S

∂I
=


−Z11I

∗
1 −Z12I

∗
1 · · · −Z1nI

∗
1

−Z21I
∗
2 −Z22I

∗
2 · · ·

...
...

...
. . .

...
−Zn1I

∗
n · · · · · · −ZnnI

∗
n

 (30a)

∂S

∂I∗
=



E1 −
n∑

j=1

Z1jIj 0 · · · 0

...
. . .

...
...

. . .
...

0 · · · · · · En −
n∑

j=1

ZnjIj


(30b)

and the submatrices ∂S∗/∂I and ∂S∗/∂I∗ are element-wise
complex conjugates of ∂S/∂I∗ and ∂S/∂I , respectively.

It is noted that both ∂S/∂I∗ and ∂S∗/∂I are diagonal
matrices, and the diagonal element of the ith row of ∂S/∂I∗

is the voltage phasor at bus i. To prove that (8) is indeed the
necessary condition for voltage instability, we define a new
matrix JZ

′
, whose diagonal elements are bus voltage phasors

and the sum of the off-diagonal elements are equivalent voltage
drops between equivalent voltage sources KiE and the bus
voltages. It is necessary to show that the determinant of the
new matrix is related to JZ . Then complex Levy–Desplanques
theorem can be applied to prove the necessary condition (8).

Note that interchanging the left block and right block of JZ

changes the sign of the determinant only when n is odd since
interchanging two columns of a matrix changes the sign of its
determinant. Let the matrix after the block swapping be JZ

′′
,

JZ
′′
=

[
∂S/∂I∗ ∂S/∂I
∂S∗/∂I∗ ∂S∗/∂I

]
(31)

and we have

det
(
JZ
′′
)
= (−1)n det

([
∂S/∂I ∂S/∂I∗

∂S∗/∂I ∂S∗/∂I∗

])
(32)

Define the matrix JZ
′

by replacing ∂S/∂I∗ and ∂S∗/∂I
by B and C of the same size as

JZ
′
=

[
∂S/∂I∗ B
C ∂S∗/∂I

]
(33)

where the matrices B and C are

B =


−Z11I1 −Z12I2 · · · −Z1nIn

−Z21I1 −Z22I2 · · ·
...

...
...

. . .
...

−Zn1I1 · · · · · · −ZnnIn

 (34a)

C = B∗ (34b)

The next lemma shows that the determinant of JZ
′

is
equal to that of JZ

′′
, whose absolute value is equal to the

determinant of JZ .

Lemma 1. det JZ = (−1)n det JZ′ .

Proof. Define a 2n× 2n complex-valued matrix M as

M =

[
M11 M12

M21 M22

]
(35)

where the four n× n blocks are

M11 =


V1/I

∗
1 0 · · · 0

... V2/I
∗
2

...
...

. . .
...

0 · · · · · · Vn/I
∗
n

 (36a)

M12 =


−Z11 −Z12 · · · −Z1n

−Z21 −Z22 · · ·
...

...
...

. . .
...

−Zn1 · · · · · · −Znn

 (36b)

M21 =M∗12 (36c)
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M22 =M∗11 (36d)

where Vi = KiE −
n∑

j=1

ZijIj is the bus i voltage.

In addition, define the 2n × 2n complex-valued diagonal
matrix N as

N =



I∗1 0 · · · 0

0
. . . 0

I∗n 0
... I1

...

0
. . .

0 0 · · · In


(37)

Then we can see that

JZ
′
=MN (38a)

JZ
′′
= NM (38b)

Therefore,

det JZ
′
= det(M) det(N) = det JZ

′′
(39)

Since
det JZ = (−1)n det JZ

′′
(40)

We arrive at the conclusion that

det JZ = (−1)n det JZ
′

(41)

Now the necessary condition (8) can be easily seen by
applying complex Levy–Desplanques theorem on the matrix
JZ
′
. We state the fact as:

Theorem 2. For the (n + 1)-bus power system described in
Section II, a power injection is at the power flow solvability
boundary only when the power flow solution satisfies

∃h ∈ {L,G} such that |Vh| ≤
n∑

i=1

|ZhiIi| (42)

Proof. With Theorem 1 and Lemma 1, and the continuity of
power flow equations, we only need to show the matrix JZ

′
is

non-singular when |Vh| >
∑n

i=1 |ZhiIi|, h ∈ {L,G}. This is
a direct consequence of complex Levy–Desplanques theorem,
which states that strictly diagonally dominant matrices are
non-singular.

Remark 2. The proposed condition provides a precursor for
power flow insolvability by setting an operating condition-
dependent upper bound in (n+1)-dimensional power injection
space. Some fixed-point theorem-based solution existence con-
ditions tend to be conservative. We will show that the upper
bound provided by the proposed condition is always greater
than the one given by the condition proposed in [3], where
the solvability condition is given by

|VS |2 > 4‖W−1Z(W ∗)−1‖∗‖S‖ (43)

where W = diag(−Y −1LL YLS), ‖ · ‖ is the Euclidean norm on
Cn and the matrix norm ‖ · ‖∗ on Cn×n is defined as

‖A‖∗ := max
h
‖Ah•‖ = max

h

√∑
k

|Ahk|2

where the notation Ah• stands for the hth row of A.
For all h ∈ {L,G},
n∑

j=1

∣∣∣∣Zhj
Sj

Vj

∣∣∣∣ = |Whh|
n∑

j=1

∣∣∣∣W−1hh Zhj(W
∗
jj)
−1
(
SjW

∗
jj

Vj

)∣∣∣∣
≤ |Whh|

∥∥∥∥WV
∥∥∥∥
∞

n∑
j=1

∣∣W−1hh Zhj(W
∗
jj)
−1Sj

∣∣
≤ |Whh|

∥∥∥∥WV
∥∥∥∥
∞

∥∥(W−1Z(W ∗)−1)
h•

∥∥ ‖S‖
≤ |Whh|

∥∥∥∥WV
∥∥∥∥
∞

∥∥W−1Z(W ∗)−1∥∥∗ ‖S‖ (44)

where W/V is the n-dimensional vector such that (W/V )i =
Wii/Vi, the second inequality is due to Cauchy-Schwarz and
the third from the definition of ‖ · ‖∗.

The inequality (44) suggests that the proposed condition (8)
guarantees solvability when∥∥W−1Z(W ∗)−1∥∥∗ ‖S‖ < 1

‖W/V ‖2∞
, (45)

since (44) and (45) lead to
n∑

j=1

∣∣∣∣Zhj
Sj

Vj

∣∣∣∣ < |Whh|
‖W/V ‖∞

≤ |Vh|. (46)

By comparing (43) and (45), it is concluded that the upper
bound provided by the proposed condition is greater than (43)
if 1/ ‖W/V ‖∞ > |VS |/2. We claim that this is the only
relevant case since solvability conditions defined in (43) and
(45) are both violated otherwise. This is made clear by the
following proposition:

Proposition 1. Assuming a stable high-voltage solution exists
for power injection S, then

∥∥W−1Z(W ∗)−1∥∥∗ ‖S‖ ≥ |VS |2/4
when |VS |/2 ≥ 1/ ‖W/V ‖∞.

Proof. We may assume there exists a power injection vector
S and corresponding voltage profile V such that∥∥W−1Z(W ∗)−1∥∥∗ ‖S‖ < |VS |2

4
(47)

and
|VS |
2
≥ 1

‖W/V ‖∞
(48)

The system has a zero power injection solution where bus
voltages V0 are close to E and 1/ ‖W/V0‖∞ > |VS |/2 when
shunt elements are not extraordinarily large [5]. Then, by
continuity, there exists a real number 0 < µ < 1 such that
the voltage profile V ′ when power injection is µS satisfies

|VS |
2

=
1

‖W/V ′‖∞
(49)

while (44) requires∥∥W−1Z(W ∗)−1∥∥∗ ‖µS‖ ≥ 1

‖W/V ′‖2∞
(50)

which contradicts the assumption (47).
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C. Influence of System Parameter Perturbations on C-index

Now we explore how different system parameters influence
the C-index through sensitivity analysis on a linearized power
flow model. Specifically, we consider the sensitivity of line
impedance and load power factors. To simplify the argument,
we assume throughout the subsection that the distribution
system is composed of a slack bus and n PQ buses with
inductive loads.

First, we consider the impact of the homogeneous change
in line impedance. Assume that for each line and each shunt
capacitance the impedance is changed such that Y ′ij/Yij = a
for all entries of the admittance matrix, where Y ′ij is the ij-
entry of the new admittance matrix and a is a real number
between 0 and 1. Consequently, the new impedance matrix Z ′

is Z ′ij = Zij/a. This change is equivalent to extending the
length of each line by multiple of 1/a. It is expected that the
critical loading factor under the new condition will decrease
as line losses increase with the increase of the line length.
We note that with the change of line impedance, the voltage
profile changes under the same loading condition. To this end
we propose to apply a linearized power flow approximation
which has been validated for distribution system analysis, to
derive an approximate voltage solution with new impedance
matrix given the loading condition. The following linearized
power flow from [3] is used:

V ′j = VS

(
1 +

1

|VS |2
n∑

i=1

Z ′jiS
∗
i

)
, ∀j ∈ L. (51)

where V ′j is the approximate bus voltage at bus j based on
the new impedance matrix Z ′. We assume that increasing
load real and reactive power injections causes decrease in PQ
bus voltages, which is a condition commonly used for the
characterization of stable systems [23]. Based on the linearized
power flow equation, this can be expressed as∣∣∣∣∣1 + 1

|VS |2
n∑

i=1

Z ′ji(bS
∗
i )

∣∣∣∣∣ <
∣∣∣∣∣1 + 1

|VS |2
n∑

i=1

Z ′jiS
∗
i

∣∣∣∣∣ ,
b > 1,∀j ∈ L. (52)

We immediately notice that increasing entries in the impedance
matrix has exactly the same effects, so we have

|V ′j | < |Vj |, j ∈ L. (53)

Now that we have analyzed the impact of line impedance
increase on the matrix Z and bus voltage V , we can conclude
that the C-index decreases with a homogeneous increase of
line impedance as

C ′j =
V ′j∑n

i=1

∣∣Z ′jiSi/V ′i
∣∣ < Cj , ∀j ∈ L. (54)

Next we consider the impact of load power factors on C-
index. For simplicity, we again assume a homogeneous power
factor variation such that the power factors of all buses j ∈ L
decrease while the magnitudes of the apparent power remain
constant. The change in load power factors affects the C-
index through the change of load voltage profiles. Specifically,
the angle ∠

(∑n
i=1 ZjiS

′∗
i

)
for bus j lies between −180◦

and 0◦, and the decrease of power factors results in the
decrease of ∠

(∑n
i=1 ZjiS

′∗). Since the magnitudes of load
power injections are constant, we have

∣∣∑n
i=1 ZjiS

′∗
i

∣∣ =
|
∑n

i=1 ZjiS
∗
i |. As a result, the load voltage magnitude drops

(|V ′j | < |Vj |) for all load bus j. Therefore, the C-indices of
all load buses decrease. Note that the result here aligns with
the general engineering wisdom that power factor correction
can potentially benefit the system voltage stability.

We demonstrate through two illustrative examples the im-
pact of system parameters on the proposed C-index. Both
examples show that the index provides a correct quantitative
indication of the system stress level. The impact of other
system parameters can be analyzed in a similar way. In
particular, the analyses of the impact of changes of individual
line impedance and load power factor can be performed as
well, but are omitted for brevity.

D. Generalization to Systems with Constant Current Buses

DG inverters may be operated in either constant power
or constant current modes. Therefore, the model should be
able to represent generators as constant power and/or constant
current buses. Since constant-current DGs are modeled as
linear elements in the paper and their currents are given, their
inclusion in the model does not change the dimension of the
Jacobian matrix (21).

For example, consider the previous (n + 1)-bus power
system model with n PQ buses where bus n+ 1 is the slack
bus. We augment the system by adding a constant current
generator as bus n+2 and evaluate the change in (21). Recall
the Jacobian (21) is

JZ =

[
∂S/∂I ∂S/∂I∗

∂S∗/∂I ∂S∗/∂I∗

]
(55)

Note that the vectors I = [I1, . . . , In]
T and S = [S1, . . . , Sn]

T

do not include the constant current bus n + 2 and that the
dimensions of the four submatrices ∂S/∂I , ∂S/∂I∗, ∂S∗/∂I ,
and ∂S∗/∂I∗ of JZ are still n × n. The expression of the
entries of the matrix (30a) remains the same. However, the
impedance matrix Z changes as a result of the modification
of the system topology. For the diagonal matrix (30b), the
diagonal entries are modified by including the current injection
from the constant current generator so that the ith diagonal
element changes from

Ei −
n∑

j=1

ZijIj (56)

to

(Ei − Zi,n+2In+2)−
n∑

j=1

ZijIj (57)

Hence, introducing constant current sources to the system
can be considered as varying the equivalent source voltage
seen from a PQ bus i from Ei to Ei − Zi,n+2In+2 from
the perspective of the complex power flow Jacobian in (21).
Therefore, all the analysis made with the assumption of PQ
buses apply.

In this work we have considered constant-power and
constant-current DGs, an important extension is to consider
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Fig. 1. Modified 123-Bus System from [3].

DGs with voltage regulation capability. The incorporation of
these DGs modifies the equivalent voltage source E seen by
PQ buses in a similar way as what has been done to include
constant-current DGs. Strictly speaking, if the DGs are set to
regulate real power outputs and voltage magnitudes, then E
is no longer fixed as the phase angles of the DGs are free to
vary. However, it turns out that the assumption of constant E
is a reasonable and effective approximation which has been
extensively validated in voltage stability-related studies [11],
[27], [28] and can be used to incorporate voltage-regulated
DGs in our framework.

IV. SIMULATIONS

We perform case studies on a test distribution system that
has been used in [3]. Details of the test system can be found
in [24]. The topology of the system is shown in Fig. 1. In the
simulations, the DG penetration level is defined as the ratio
of total DG capacity to total peak apparent load power of all
loads [25].

A. System With Constant-Power DG inverters

Simulations are performed by increasing the load power
consumption at each load bus incrementally at the step of
1% of the base load until power flow fails to converge. Power
flow analysis is performed using the open-source package Mat-
power [26]. The base load of the given system can be found
in [24]. Table I compares the actual critical loading factors
obtained through power flow analysis and those calculated by
the proposed C-index at different DG penetration levels. The
second column shows the loading factor at which the power
flow diverges, i.e., actual critical loading factors. The third
column shows the loading factors at which the system-wide
C-index (i.e., the minimum C-index) reaches 1. It is observed
that for all cases, the point of the first occurrence of unity
C-index lies close to the power flow solvability boundary.

Fig. 2 shows the matrix JZ
′

defined in (33) when the DG
penetration level is 90%. JZ

′
is shown since it is proved in

Lemma 1 that the determinant of JZ
′

has the same magnitude
as the determinant of the complex power flow Jacobian JZ

TABLE I
COMPARISON OF POWER FLOW AND C-INDEX-BASED CRITICAL

LOADING FACTORS

DG penetration Critical
Loading factor Difference of
when C-index two loading

level loading factor drops to 1 factors

10% 4.251 4.189 1.46%
20% 4.332 4.270 1.43%
30% 4.413 4.348 1.47%
40% 4.494 4.424 1.56%
50% 4.574 4.497 1.68%
60% 4.654 4.566 1.89%
70% 4.733 4.632 2.13%
80% 4.811 4.695 2.41%
90% 4.889 4.755 2.74%

100% 4.967 4.811 3.14%

(a) Base case

(b) Critical point

Fig. 2. Visualization of matrix F at (a) base case and (b) critical point with
penetration level of 90%

in (21). Instead of showing the full 2n × 2n matrix JZ
′

whose lower blocks are complex conjugate to their upper
counterparts, we show a more compact real-valued n × n
matrix F defined as

F =

∣∣∣∣∣∣∣∣ ∂S∂I∗
∣∣∣∣− |B|∣∣∣∣ (58)
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Fig. 3. Change of C-index at all load buses as system stress increases when
system penetration levels are (a) 10%, (b) 40%, (c) 70%, and (d) 100%.

where ∂S/∂I∗ and B are two upper submatrices of JZ
′

and |·|
denotes a matrix whose entries are element-wise magnitudes
of the original matrix. Notice that the off-diagonal entries of F
are the magnitudes of the corresponding entries of the matrix
B, Fij = |ZijIj |, i 6= j, whereas the diagonal entries of F
are the differences between the magnitudes of the diagonal
entries of ∂S/∂I∗ and that of B, Fii = |Vi| − |ZiiIi|. That
is, F is diagonally dominant if and only if JZ

′
is diagonally

dominant, given that the magnitude of the diagonal entries of
∂S/∂I∗ is larger than that of B.

It is observed from Fig. 2a that, at the base loading
condition, F is strongly diagonally dominant in the sense that
the diagonal entries are much larger than the sum of the off-
diagonal entries. The matrix F gradually loses its diagonal
dominance as system stress increases with the decrease of
diagonal elements (bus voltage) and increase of off-diagonal
elements (voltage drop). This can be seen in Fig. 2b, which
shows the matrix F at the critical loading condition.

Fig. 3 shows the changes of C-indices at all PQ buses
as the system loading factor increases when DG penetration
levels are 10%, 40%, 70% and 100%, respectively. It can be
seen that the indices are monotonically decreasing as system
stresses and more than one-third of them drop below unity at
the critical point.

Fig. 4 shows, by red dots, the point where C-index drops to
1 for each bus when system penetration levels are 10%, 40%,
70%, and 100%, respectively. The buses whose corresponding
C-indices drop below 1 are in the range of bus numbers
10–40, indicating the severity of stress for those buses. The
closeness of the first occurrence of unity index to the actual
critical point is demonstrated. The vertical solid lines show
the loading factor when the sufficient condition of solution
existence proposed in [3] is marginally satisfied. It can be seen
that the power flow is still solvable when the loading factor
exceeds the vertical solid line. However, it becomes insolvable
around the red dots. Therefore, the condition given in [3] is
more conservative, which is in accordance with the argument
in Remark 2.
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Fig. 4. The red dots show where C-index drops to unity for each bus
before critical point when system penetration levels are (a) 10%, (b) 40%, (c)
70%, and (d) 100%. Black lines show the loading factor when the sufficient
condition of solution existence proposed in [3] is marginally satisfied. Blue
lines show the critical loading factor.

TABLE II
COMPARISON OF POWER FLOW AND C-INDEX-BASED CRITICAL

LOADING FACTORS FOR SYSTEMS WITH CONSTANT-CURRENT DGS

DG penetration Critical
Loading factor Difference of
when C-index two loading

level loading factor drops to 1 factors

10% 4.522 4.456 1.46%
20% 4.589 4.523 1.44%
30% 4.656 4.588 1.46%
40% 4.721 4.651 1.48%
50% 4.786 4.712 1.55%
60% 4.851 4.771 1.65%
70% 4.915 4.828 1.77%
80% 4.978 4.883 1.91%
90% 5.041 4.937 2.06%

100% 5.103 4.989 2.23%

B. System With Constant-Current DG Inverters

To demonstrate the effectiveness of the proposed method
in analyzing a system with constant-current DG inverters, we
replace the constant-power sources at buses 9, 24, 35, 43,
and 51 with constant-current ones. Fig. 5 shows C-indices
at all buses at the system critical point when DG penetration
levels are (a) 10%, (b) 40%, (c) 70%, and (d) 100%. There are
vacancies in the figures because buses with constant current
sources are removed from the complex power flow Jacobian
JZ , and their C-indices are not calculated. It can be seen that
some indices are less than 1 at the critical loading condition,
thus validating the extension of the proposed condition to
systems with constant current buses.

Table II compares the actual critical loading factors obtained
through power flow analysis and those calculated by the
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Fig. 5. C-index at all PQ buses at critical point when DG penetration level
are (a) 10%, (b) 40%, (c) 70%, and (d) 100%. Buses 9, 24, 35, 43, and 51
are constant current sources.

proposed C-index at different DG penetration levels for a
system with constant-current DGs. It is seen from the table that
the differences of the two loading factors induced by systems
with constant-current DGs are smaller compared to systems
with only constant-power DGs.

V. DISCUSSIONS

In this section, we discuss the reasons of the minor mis-
match of the proposed and actual critical loading factors,
compare the stability indices for systems with different types
of DGs, and introduce the physical meaning of the proposed
condition.

First of all, we point out that the critical loading factor
provided by the proposed condition is closer to the actual one
when loads are changing proportionally. This can be explained
as follows: consider the system introduced in Section II with
n + 1 buses where bus 0 is the slack bus and buses 1 to n
are PQ buses. If the power injections of the PQ buses change
in a way such that their current injections are proportional
(magnitude- and angle-wise), then Kessel and Glavitsch [27]
showed that the steady-state voltage instability occurs when
there is a bus j such that∣∣∣∣∣

n∑
i=1

ZjiIi

∣∣∣∣∣ = |Vj |. (59)

However, the above condition only holds when PQ bus current
injections are always proportional, which is unrealistic. In
particular, the condition may be met either before or after
actual voltage stability point if the PQ bus current injections
are disproportional, which is a major drawback. However,
when power injections are proportional, the assumption of
proportional current injection is approximately satisfied since
bus voltages are close to 1 under normal operating conditions
and their changes tend to be homogeneous as well. Therefore,
the condition in [27] works relatively well under proportional
load variations, and it becomes less effective as load variation
deviates from the assumed proportional pattern.

Notice the similarity between the condition in [27] and our
proposed sufficient condition for voltage stability,

n∑
i=1

|ZjiIi| < |Vj |, j = 1, . . . , n. (60)

In fact, the proposed condition can be regarded as a general-
ization of the one in [27]. By the same token, the mismatch
between the critical loading factors given by the proposed
condition and the actual one is smaller when the power
injections are proportional, and becomes larger when the
disproportionality of power injections increases. As a special
case, the critical loading factor provided by the proposed
condition coincides with that in [27] when all lines in the
system have the same r/x ratio and all PQ bus current
injections have an identical phase angle. This is because under
these assumptions all summands ZjiIi on the left side in
the proposed condition (60) are in phase and the absolute
value operator can be moved outside the summation. In this
manuscript, constant-power DGs in the system are simulated
such that their outputs remain unchanged as load demands
increase. As such, the power injection disproportionality rises
with an increasing penetration level of constant-power DGs.
So the difference between the two loading factors becomes
larger with the increase of PV penetration level as shown in
Table I.

On the other hand, the penetrations of constant-current DGs
do not affect the proportionality of power injections, since
constant-current DGs are linear elements from circuit analysis
perspective and are not included in constant-power buses.
Hence, their current contributions are not included in the left
side of the proposed condition (60). Rather, the contributions
of constant-current DGs are modeled as a modification to
the equivalent voltage source E as explained in Section
III-D. Therefore, the mismatch between the proposed and
actual loading factors is larger for constant-power DGs since
their penetration leads to disproportional variations of power
injections.

However, the difference between the two loading factors
does not necessarily reflect the accuracy of the proposed
condition. The system critical loading factors in Tables I and
II are obtained by assuming a specific power variation pattern
(i.e., constant DG power/current injection and proportionally
increasing load demands in this paper). For instance, if outputs
of constant-power DGs decrease as load demands increase,
then the critical loading factor would be smaller. Nevertheless,
the proposed index provides a lower bound for the smallest
critical loading factor. The comparison of the critical loading
factor by the proposed method and the worst critical loading
factor is beyond the scope of the manuscript. However, our
main point is that by relaxing the condition proposed in
[27], we have proved rigorously that the new condition (60)
guarantees voltage stability under all power variation patterns,
not only when the constant-power bus current injections are
changing proportionally.

VI. CONCLUSIONS

This paper proposes a necessary condition for the power
flow insolvability in a distribution system with DGs. The
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condition is proved through detailed mathematical derivation.
It is shown that the proposed condition provides a precursor
for power flow insolvability by setting an operating condition-
dependent upper bound in the power injection space. Based on
the necessary condition, a new index is designed to monitor
the operating condition and it provides a precursor to voltage
instability. We verify the effectiveness of the proposed condi-
tion and index via numerical simulations on a distribution test
system with different types and penetration levels of DGs. The
advantages of the proposed method can be summarized as 1)
it is adaptive to system operating conditions, 2) the calculation
only needs the present snapshot of voltage phasors, and 3) it
requires a small computation effort. The proposed method can
be used to assist the planning, online monitoring and operation
of power distribution systems with DGs.
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