

International System of Units (SI) [Part 1] (According to JIS Z 8203 "SI units and recommendations for the use of their multiples and of certain other units" and Z 8202

Data Sheet

"Quantities and units")

SI stands for Système International d'Unités in French (International System of Units in English), an internationally accepted official abbreviation.

Purpose and historical background of the SI

Origin of the term SI (International System of Units)

The Metre Convention was signed in 1875 to oversee the keeping of metric system as a unified international system of units. Then, the metric system had more than ten variations, losing its consistency. At the 9th General Conference on Weights and Measures (Conférence Générale des Poids et Mesures: CGPM) in 1948, a resolution was adopted "to use a unified system of units in all fields". The International Committee for Weights and Measures (Comité International des Poids et Mesures: CIPM) of the treaty organization started a process to establish a unified system and determined the framework of the SI in 1960. In 1973, the International Organization for Standardization (ISO) developed the standard ISO 1000, which describes SI units and recommendations for the use of them, leading to global adoption of the system. In Japan, a policy to introduce SI units into JIS through the following three phases was determined in 1972; the introduction of SI units into JIS progressed rapidly.

First phase: Use of conventional units followed by SI units e.g. 1 kgf [9.8 N]

Second phase: Use of SI units followed by conventional units e.g. 10 N {1.02 kgf} e.g. 10 N

Third phase: Use of SI units only

The Measurement Act in Japan was fully revised in 1992 and enacted in 1993 to unify statutory measurement units into SI units. Under the new Measurement Act, a transition period of up to seven years was granted before the exclusive use of SI units for "pressure" and "moment of force" in the field of hydraulics, and the period expired on September 30, 1999. Since October 1, 1999, it has been mandatory to use SI units as statutory measurement units for transactions and certifications. Commercially available pressure gauges are in SI units. The units used in this catalogue are SI units.

All units used in this catalogue are SI units as applicable in the third phase of the SI implementation process.

Structure of SI units and JIS Z 8203

Important Non-SI Units Accepted for Use with SI Units

Base Units

Quantity	Base Unit	
Quantity	Name	Symbol
Length	meter	m
Mass	kilogram	kg
Time	second	s
Electric Current	ampere	А
Thermodynamic Temperature	kelvin	К
Amount of Substance	mole	mol
Luminous Intensity	candela	cd

Supplementary Units	

Quantity	Supplementary Unit	
	Name	Symbol
Plane Angle	radian	rad
Solid Angle	steradian	sr

Data Sheet International System <u>Units (S</u>

International System of Units (SI) [Part 2]

Prefixes

Prefixes are used to form decimal multiples of SI units.

Lipit Multiplion	Prefix	
Unit Multiplier	Name	Symbol
10^{24}	yotta	Y
10^{21}	zetta	Z
1018	exa	Е
1015	peta	Р
10^{12}	tera	Т
10^{9}	giga	G
10^{6}	mega	Μ
10^{3}	kilo	k
10^{2}	hecto	h
10	deka	da
10-1	deci	d
10-2	centi	с
10-3	milli	m
10^{-6}	micro	μ
10-9	nano	n
10-12	pico	р
10-15	femto	f
10-18	atto	a
10-21	zepto	Z
10-24	yocto	У

Non-SI units accepted for use with SI units

Quantity	Unit Name	Unit Symbol
Time	minute hour day	min h d
Plane Angle	degree minute second	0 1 11
Volume	liter	l, L*
Mass	metric ton	t

★The letter "L" may be used as the symbol for liter, when the symbol "I" for liter might be confused with any other character (as a general rule, Yuken uses "L").

 Units accepted for use with SI units for usefulness in special fields

Quantity	Unit Name	Unit Symbol
Energy	electronvolt	eV
Atomic Mass	atomic mass unit	u
Distance	astronomical unit	AU
	parsec	pc
Fluid Pressure	bar	bar

Derived units

Derived units are expressed algebraically in terms of base units and supplementary units (by means of the mathematical symbols of multiplication and division) in the International System of Units.

Derived units expressed in terms of SI base units

Quentity	Derived Unit		
Quantity	Name	Symbol	
Area	square meter	m²	
Volume	cubic meter	m³	
Speed, Velocity	meter per second	m/s	
Acceleration	meter per second squared	m/s ²	
Wavenumber	reciprocal meter	m⁻¹	
Density	kilogram per cubic meter	kg/m ³	
Current Density	ampere per square meter	A/m ²	
Magnetic Field Strength	ampere per meter	A/m	
(Amount-of-substance) Concentration	mole per cubic meter	mol/m ³	
Specific Volume	cubic meter per kilogram	m³/kg	
Luminance	candela per square meter	cd/m ²	

Derived units with special names

Quantity	Derived Unit		
Quantity	Name	Symbol	Definition
Frequency	hertz	Hz	s⁻¹
Force	newton	Ν	kg∙m/s²
Pressure, Stress	pascal	Ра	N/m ²
Energy, Work, Amount of Heat	joule	J	N∙m
Amount of Work Done Per Time, Motive Power, Electrical Power	watt	W	J/s
Electric Charge, Amount of Electricity	coulomb	С	A∙s
Electric Potential, Potential Difference, Voltage, Electromotive Force	volt	v	W/A
Capacitance	farad	F	C/V
Electric Resistance	ohm	Ω	V/A
(Electric) Conductance	siemens	S	A/V
Magnetic Flux	weber	Wb	V∙s
Magnetic Flux Density, Magnetic Induction	tesla	Т	Wb/m ²
Inductance	henry	Η	Wb/A
Celsius Temperature	degree celsius/degree	°C	
Luminous Flux	lumen	lm	cd∙sy
Illuminance	lux	lx	lm/m ²
Activity Referred to a Radionuclide	becquerel	Bq	S⁻¹
Absorbed Dose	gray	Gy	J/kg
Dose Equivalent	sievert	Sv	Gy

International System of Units (SI) [Part 3]

Use of SI units

Space and T	ime	
Quantity	SI Unit	Decimal Multiple Unit
Plane Angle	rad (radian)	mrad μ rad
Solid Angle	sr (steradian)	
Length, Width, Height, Thickness, Radius, Diameter, Length of Path Traveled, Distance	m (meter)	km dm cm mm μm nm pm
Area	m ² (square meter)	km ² dm ² cm ² mm ²
Volume	m ³ (cubic meter)	dm ³ cm ³ mm ³
Time	S (second)	ks ms μs ns
Angular Velocity	rad/s (radian per second)	
Speed, Velocity	m/s (meter per second)	
Acceleration	m/s ² (meter per second squared)	
Deriedie end	Deleted Dk	
		lenomena
Frequency		THz GHz MHz kHz
	Hz (hertz)	
Rotational Speed, Revolutions	s ⁻¹ (per second)	
Dynamics		
Mass	kg (kilogram)	Mg
		g mg μg

Dynamics		
Quantity	SI Unit	Decimal Multiple Unit
Density, Concentration	kg/m ³ (kilogram per cubic meter)	mg/m ³ or kg/dm ³ or g/cm ³
Moment of Inertia	kg·m ^² (kilogram meter squared)	
Force	N (newton)	MN kN mN μN
Moment of Force	N·m (newton meter)	$\begin{array}{c} MN\cdot m\\ kN\cdot m\\ mN\cdot m\\ \mu N\cdot m\end{array}$
Pressure	Pa (pascal)	GPa MPa kPa mPa
Stress	(pascal or newton per square meter) Pa or N/m ²	μ Pa GPa, MPa or N/mm ² , kPa
Viscosity	Pa·s (pascal second)	mPa∙s
Kinematic Viscosity	m ² /s (square meter per second)	mm²/s
Work, Energy, Amount of Heat	J (joule)	TJ GJ MJ kJ mJ
Power, Amount of Work Done Per Unit of Time	W (watt)	GW MW kW mW μW
Flow Rate	m ³ /s (cubic meter per second)	

пеа		
Quantity	SI Unit	Decimal Multiple Unit
Thermodynamic Temperature	K (kelvin)	
Celsius Temperature	^o C (degree Celsius or degree)	
Temperature Interval, Temperature Difference	K or °C	
Amount of Heat	J (joule)	TJ GJ MJ kJ mJ
Heat Flow Rate	W (watt)	kW
Thermal Conductivity	$W/(m \cdot K)$	
Coefficient of Heat Transfer	$W/(m^2 \cdot K)$	
Specific Heat Capacity	J/(kg·K)	$kJ/(kg\cdot K)$

Electricity and Magnetism Electric Current A (ampere)

Current	A (ampere)	
	(unpere)	mA
		"A
		nA
		nA
		pri
Electric Potential,		MV
Electric Potential		kV
Voltage,	V (volt)	
Electromotive		mV
Force		μV
(Electric)		GQ
Resistance		MΩ
(Direct		(Remarks) MΩ
Current)		is also referred
,		to as megorim.
		kΩ
	Ω (ohm)	
		mΩ
		μΩ
(Active)		TW
Electric		GW
Power		MW
		kW
	W (watt)	
		mW
		"W
		pW
		1111
Sound		
Frequency		GHz
		MHz

Frequency	Hz (hertz)	GHz MHz kHz
Sound Pressu	re Level*	
*This SI unit 1000-1973 and	is not prov d ISO 31 Pa	ided by ISO rt 7-1978. but

1000-1973 and ISO 31 Part 7-1978, but JIS adopts and specifies dB (decibel) as a unit accepted for use with SI units. Data Sheet

SI unit conversion factors table

(Shaded columns represent SI units.)

Force

N Newton	dyn	kgf	
1	1×10^{5}	$1.01972{ imes}10^{-1}$	
1×10^{-5}	1	$1.01972{ imes}10^{-6}$	
9.806 65	$9.806~65 \times 10^{5}$	1	

Moment of inertia		
N·m Newton meter	kgf∙m	
1 9.807	0.101 972 1	
Note) 1 N·m = 1 kg•m ² /s ²		

Pressure

-					
Pa pascal	bar	kgf/cm ²	atm	mmH2O	mmHg or Torr
1	1×10^{-5}	1.01972×10^{-5}	$9.86923{ imes}10^{-6}$	$1.01972{ imes}10^{-1}$	$7.500.62 \times 10^{-3}$
1×10^{5}	1	1.019 72	$9.86923 imes 10^{-1}$	$1.01972{ imes}10^4$	$7.500.62 \times 10^{2}$
$9.806~65 \times 10^4$	$9.806.65 \times 10^{-1}$	1	$9.67841{ imes}10^{-1}$	1×10^4	$7.35559{ imes}10^2$
$1.013\ 25{ imes}10^{5}$	1.013 25	1.033 23	1	$1.03323{ imes}10^4$	$7.600\ 00 \times 10^2$
9.806 65	$9.806.65 \times 10^{-5}$	1×10^{-4}	$9.67841{ imes}10^{-5}$	1	7.35559×10^{-2}
$1.333\ 22{ imes}10^2$	$1.33322{ imes}10^{-3}$	$1.35951{ imes}10^{-3}$	$1.31579{ imes}10^{-3}$	$1.35951{ imes}10$	1

Note) 1 Pa = 1 N/m

Stress

Pa pascal	MPa or N/mm ² Megapascal or newton per square milimeter	kgf/mm ²	kgf/cm ²
1	1×10^{-6}	1.01972×10^{-7}	$1.01972{ imes}10^{-5}$
1×10^{6}	1	$1.01972 imes 10^{-1}$	$1.01972{ imes}10$
$9.806~65{ imes}10^{6}$	9.806 65	1	1×10^2
$9.806~65{ imes}10^4$	$9.806.65 \times 10^{-2}$	1×10^{-2}	1

• Work, energy, amount of heat

J joule	kW∙h	kgf∙m	kcal
1	$2.77778{ imes}10^{-7}$	$1.01972{ imes}10^{-1}$	$2.388\ 89{ imes}10^{-4}$
3.600×10^{6}	1	$3.670.98 \times 10^{5}$	$8.600 \ 0 \ \times 10^2$
9.806 65	$2.724\ 07{ imes}10^{-6}$	1	$2.342~70{ imes}10^{-3}$
$4.18605{ imes}10^3$	$1.16279{ imes}10^{-3}$	$4.26858{ imes}10^2$	1

Note) 1 J = 1 W•s, 1 W•h = 3,600 W•s 1 cal = 4.186 05 J (according to the Measurement Act)

Temperature

LT3: °E

 $T_1 = T_2 + 273.15$

 $T_3 = 1.8 T_2 + 32$ T₁: Thermodynamic

temperature

Power (amount of work done per unit of time or motive power)

kW kilowatt	kgf∙m/s	PS	kcal/h
1	1.01972×10^{2}	1.359 62	$8.600 \ 0 \ \times 10^2$
$9.806.65 imes 10^{-3}$	1	$1.33333{ imes}10^{-2}$	8.433 71
7.355×10^{-1}	7.5 ×10	1	$6.32529{ imes}10^2$
$1.16279{ imes}10^{-3}$	1.18572×10^{-1}	$1.580.95 imes 10^{-3}$	1

Note) 1 W = 1 J/s, PS: French horsepower 1 PS = 0.735 5 kW (according to the Act for Enforcement of the Measurement Act) 1 cal = 4.186 05 J (according to the Measurement Act)

Viscosity

Pa•s pascal second	cP	Р
1	1×10^{3}	1×10
1×10^{-3}	1	1×10^{-2}
1×10^{-1}	1×10^2	1
Note) 1 P = 1 dyn•s/cm² = 1 g/cm•s 1 Pa•s = 1 N•s/m², 1 cP = 1 mPa•s		

Kinematic viscosity

-	,		
m ² /s square meter per second	cSt	St	
1	1×10^{6}	1×10^{4}	
1×10^{-6}	1	1×10^{-2}	
1×10^{-4}	1×10^{2}	1	
Note) 1 cSt = 1 mm ² /s, 1 St = 1 cm ² /s			

Thermal conductivity

W/(m•K) watt per meter kelvin	kcal/(h∙m•℃)	
1 1.162 79	$8.600 \ 0 \times 10^{-1}$ 1	
Note) 1 cal = 4.186 05 J (according to the Measurement Act		

Coefficient of heat transfer

W/(m ² •K) watt per meter squared kelvin	kcal∕(h∙m²•°C)	
1 1.162 79	$8.600.0 \times 10^{-1}$ 1	
Note) 1 cal = 4.186 05 J (according to the Measurement Act		

Data Sheet —