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The male, female, pupa and larva of a new species of Gelechiidae (Lepidoptera),
Locharcha opportuna Moreira and Becker, are described and illustrated with the aid
of optical and scanning electron microscopy. A preliminary analysis of mitochon-
drial DNA sequences including members of related lineages is also provided. The
immature stages are associated with galls induced by a species of Palaeomystella
Fletcher (Lepidoptera: Momphidae) on Tibouchina sellowiana (Cham.) Cogn.
(Melastomataceae), endemic to the Atlantic Rainforest. Larvae are kleptoparasitic,
usurping the gall internal space and thereafter feeding on the internal tissues. By
determining the variation in population density of both species and following gall
development individually throughout ontogeny under field conditions, we demon-
strated that the kleptoparasite completes its life cycle inside galls induced by
Palaeomystella, where pupation occurs. The variation in seasonal abundance of
the kleptoparasite is tied to that of the cecidogenous species, with their correspond-
ing peaks in density occurring sequentially.

http://zoobank.org/urn:lsid:zoobank.org:pub:525F6D52-8CE1-47D1-A0D9-
78B564DF5565

Keywords: Neotropical region; Atlantic Rainforest; melastome galls; momphid
moths; kleptoparasitism

Introduction

Cecidogenous insect species are known as ecosystem engineers (Sanver and Hawkins
2000), because the galls that they induce are used as a resource not only by themselves but
also by other guilds (Mani 1964). They may form very complex, multitrophic-level
systems including predators, parasitoids, cecidophagous, inquilines and kleptoparasites,
among other insects, such as successors who may use the empty galls for shelter.
Although well known for other biological systems (e.g. Iyengar 2008; Litman
et al. 2013), the kleptoparasites in particular have been little studied in the context of
insect galls, except for those induced by Thysanoptera (Morris et al. 2000; Mound and
Morris 2000; Bono 2007). They are known to feed on the gall tissues, after invading the

*Corresponding author. Email: gilson.moreira@ufrgs.br

Journal of Natural History, 2015
Vol. 49, Nos. 31–32, 1849–1875, http://dx.doi.org/10.1080/00222933.2015.1006284

© 2015 Taylor & Francis

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
C

am
br

id
ge

] 
at

 0
5:

10
 0

8 
A

pr
il 

20
16

 

http://www.zoobank.org/urn:lsid:zoobank.org:pub:525F6D52-8CE1-47D1-A0D9-78B564DF5565
http://www.zoobank.org/urn:lsid:zoobank.org:pub:525F6D52-8CE1-47D1-A0D9-78B564DF5565


gall and usurping the cecidogenous species (e.g. Morris et al. 2000). Contrary to the
inquilines, which may change substantially both the shape and size of the galls that they
invade, by inducing either similar (Brooks and Shorthouse 1988) or different tissues (Van
Noort et al. 2007) from the cecidogenous insects, kleptoparasites do not induce devel-
opment of new tissues but simply feed on those that were induced to develop by their
precursors. Unlike cecidophagous insects that are exclusively phytophagous and mobile,
and thus may feed on the external portion of more than one gall (e.g. Caltagirone 1964),
kleptoparasites are omnivorous and relatively sedentary, usually feeding on the internal
portions of a single gall during ontogeny. However, in the literature on galls induced by
Lepidoptera in particular, the meaning of such terms is confused; in general, the use of
kleptoparasitism has been neglected (e.g.Miller 2005; Sugiura andYamazaki 2009), with
the exception of Ito andHattori (1983), and cecidophagy has been used in some cases as a
synonym of inquilinism (e.g. Caltagirone 1964; Miller 2005; Bená and Vanin 2013), and
thus needs to be revised. According to Miller (2005), lepidopterans belonging to at least
nine families are found within this poorly defined feeding group.

The fauna associated with galls induced by Lepidoptera in general is still little known,
even regarding the cecidogenous group, which includes a few hundred species belonging to
c.20 families, most within theGelechioidea.Most of these species await description, as they
are known only from their gall morphotype (for a review, see Miller 2005). In the
Neotropical region these gall morphotypes are commonly found in Melastomaceae (e.g.
Tavares 1917; Houard 1933; Lima 1945). However, only six of them have been recently
associated with the cecidogenous species, all belonging to the genus Palaeomystella
Fletcher (Momphidae) (Becker and Adamski 2008; Luz et al. 2014). More precise knowl-
edge of this fauna will require additional effort including intensive studies, since the
presence of other feeding groups, such as inquilines, cecidophages insects and kleptopar-
asites may lead to misidentification of species and their corresponding biological functions
in the gall system, if any. This is particularly true when species of different feeding groups
belonging to closely related lineages are present at the same time in these complex, multi-
trophic gall systems.

As a case study, herein we describe the larva, pupa and adults of a new species of
kleptoparasitic gelechiid moth belonging to the genus LocharchaMeyrick, associated with
a fusiform gall induced by Palaeomystella fernandesi Moreira & Becker (Lepidoptera:
Momphidae) that was described in Luz et al. (2014), on Tibouchina sellowiana (Cham.)
Cogn. (Melastomataceae) in southern Brazil. We also carried out a preliminary analysis of
mitochondrial DNA sequences, including members of related lineages. By following the
development of galls individually throughout ontogeny under field conditions, we deter-
mined the life history of the kleptoparasite in comparison with the cecidogenous species,
taking into account variations in gall colour and size. In addition, through monthly
estimates of the density of galls on T. sellowiana plants, together with dissection of field-
collected galls in the laboratory, during 14 months, we determined concomitantly the
variation in the seasonal abundance of both the cecidogenous and kleptoparasitic moths.

Materials and methods

Taxonomy

Specimens used in the study were reared in small plastic vials under controlled abiotic
conditions (14 h light/10 h dark; 25 ± 2°C) in the Laboratório de Morfologia e
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Comportamento de Insetos, Departamento de Zoologia, Universidade Federal do
Rio Grande do Sul (UFRGS), Porto Alegre city, state of Rio Grande do Sul (RS),
Brazil, from March 2012 through April 2013. They came from galls induced by
Palaeomystella fernandesi Moreira & Becker (Lepidoptera: Momphidae), which
were described elsewhere (Luz et al. 2014). These galls were field-collected with either
late-instar larvae or pupae inside, developed on shoots of Tibouchina sellowiana
(Cham.) Cogn. from a population existing at CPCN Pró-Mata, São Francisco de
Paula, RS, Brazil. Immature stages were obtained from additional dissected galls.
They were fixed in Dietrich´s fluid and preserved in 75% ethanol.

For gross morphology descriptions, the specimens were cleared in a 10% potas-
sium hydroxide (KOH) solution and slide-mounted in either glycerine jelly or Canada
balsam. Observations were performed with the aid of a Leica® M125 stereomicro-
scope (Wetzlar, Germany). Structures selected to be drawn were previously photo-
graphed with an attached Sony® Cyber-shot DSC-H10 digital camera (Tokyo,
Japan). Vectorized line drawings were then made with the software Corel Photo-
Paint® X3, using the corresponding digitized images as a guide. At least five speci-
mens were used for the descriptions of each life stage or instar. Measurements were
made with an attached ocular micrometer.

For scanning electron microscope analyses, additional specimens were dehydrated
in a Bal-Tec® CPD 030 critical-point dryer (Pfäffikon ZH, Switzerland), mounted
with double-sided tape on metal stubs, and coated with gold in a Bal-Tec® SCD 050
sputter coater. They were examined and photographed in a JEOL® JSM 5800
scanning electron microscope (Tokyo, Japan) at the Centro de Microscopia
Eletrônica (CME) of UFRGS.

Nomenclature follows Stehr (1987) for the larva, Patočka and Turčani (2005) for
the pupa, and Lee and Brown (2008) for the adults.

Molecular analysis

High-quality DNA was purified from larval tissue, using the organic method of cetyl
trimethyl ammonium bromide (CTAB) from three specimens (Table 1). Amplification
was performed through a polymerase chain reaction (PCR) for a 621-base pair (bp)
segment of the mitochondrial gene cytochrome c oxidase subunit I (CO-I), with the
universal primers LCO1490 (5ʹ-GGTCAACAAATCATAAAGATATTGG-3ʹ) and
HCO2198 (5ʹ-TAAACTTCAGGGTGACCAAAAAATCA-3ʹ), following the pro-
gram and conditions proposed by Folmer et al. (1994). Accordingly, we obtained
variants that match exactly the region previously sequenced in related gelechiids
deposited in the GenBank database and Barcode of Life DataBase. Aliquots of PCR
products were treated with exonuclease I and FastAP thermosensitive alkaline phos-
phatase (Thermo Scientific, Waltham, MA, USA), sequenced using the BigDye chem-
istry and analysed on an ABI3730XL (Applied Biosystems, Waltham, MA, USA) at
Macrogen (Seoul, Republic of Korea). Sequences were aligned and visually inspected
using the algorithm Clustal X in MEGA 5 (Tamura et al. 2011) running in full mode
with no manual adjustment. Data generated in this study were submitted to GenBank
(ID 1693397) and are awaiting accession numbers (Table 1).

A phylogenetic tree was reconstructed in order to test our hypothesis of mono-
phyletic status for the new species and also to infer its evolutionary relationships
among specific genera within Gelechiinae We thus incorporated all available taxa
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belonging to Coleotechnites (the putative sister lineage of the new taxa based on our
preliminary findings) and rooted with the currently known related genera Exoteleia
and Recurvaria, according to Karsholt et al. (2013) and Lee and Brown (2008)
(Table 1).

Phylogenetic reconstructions were based on two methods: Bayesian inference
(BI), implemented in BEAST 2.0 (Drummond et al. 2012) and maximum likelihood
(ML), run in PHYML 3.0 (Guindon et al. 2010). In BI, a relaxed uncorrelated
lognormal clock was used together with no fixed mean substitution rate and a Yule
prior on branching rates, using the GTR (general time-reversible; Rodríguez
et al. 1990) model of sequence evolution. Four independent runs of 10 million
generations and a burn-in period of 10,000 (the first 1000 trees were discarded)
were used; the remaining trees were summarized in TreeAnnotator 1.6.2
(Drummond and Rambaut 2007) and used to infer a maximum a posteriori consensus
tree. Bayesian posterior probabilities (BPP) were used as an estimate of branch
support. For ML, the program jModeltest (Posada 2008) was used to estimate the
substitution model GTR + G, with gamma distribution (G) according to the Akaike
information criterion. Monophyly-confidence limits were assessed with the bootstrap
method (Felsenstein 1985) at 60% cut-off after 1000 bootstrap iterations. Trees were
visualized and edited in FigTree 1.3.1 (http://tree.bio.ed.ac.uk/software/201/). Finally,
we analysed the evolutionary distance between the same pairs of taxa used in the
phylogenetic analysis (including outgroups) using the Kimura 2-parameters (K2P)
model (Kimura 1980) procedure, with 1000 bootstrap replications.

Table 1. Specimens used to reconstruct the monophyletic status and phylogenetic relationships
of Locharcha opportuna, using related genera.

Genus Species Voucher GenBank accession
numbers

Ingroup
Coleotechnites

C. atrupictella 10-JDWBC-3951 HM865863
C. blastovora 10-JDWBC-1056 HM862690
C. nr. coniferella UBC-2007–0871 FJ412324
C. florae 10-JDWBC-2714 HM864509
C. piceaella EE-725–93 P3 HM374090
C. quercivorella BIOUG:2006-ONT-0146 GU358080
Coleotechnites sp. Jflandry0789 GU095776
C. starki 10-JDWBC-2912 HM864727

Locharcha
L. opportuna LMCI 174-57_1 ID 1693397

LMCI 174-57_2 ID 1693397
LMCI 174-53_A ID 1693397

Outgroup
Exoteleia dodecella CNCLEP00024608 GU358112
Exoteleia pinifoliella JFL3 BIOUG: HLC-17153 GU358161
Recurvaria nanella CNCLEP00028723 GU358180

1852 F.A. Luz et al.
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Museum collections

Abbreviations of the institutions from which specimens were examined are as follows.
DZUP: Coll. Padre Jesus S. Moure, Departamento de Zoologia, Universidade
Federal do Paraná, Curitiba, Paraná, Brazil; LMCI: Laboratório de Morfologia e
Comportamento de Insetos, Universidade Federal do Rio Grande do Sul, Porto
Alegre, Rio Grande do Sul, Brazil; MCNZ: Museu de Ciências Naturais,
Fundação Zoobotânica do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul,
Brazil; MCTP: Museu de Ciências e Tecnologia da Pontifícia Universidade Católica
do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil; VOB: Coll. Vitor O.
Becker, Reserva Serra Bonita, Camacan, Bahia.

Population studies

From April 2012 through May 2013, galls were collected monthly from an additional
population of T. sellowiana existing at the type locality. The CPCN Pró-Mata is a
4500 ha reserve of Atlantic Rainforest, with portions of Dense Umbrophilous Forest
(= Brazilian Atlantic Rainforest sensu stricto) intermixed with fragments of Araucaria
Forest and grasslands. Tibouchina sellowiana plants are common in the area, mainly
along the trails located at higher altitudes (Mello 2006).

To determine the variation in density and colour of galls, a total of 160 randomly
selected plants (ranging from 1 to 2 m tall) that were located and mapped along two
trails were surveyed (for a corresponding map, see Supplementary material, Figure 1S).
From these plants, 140 individuals were mapped, randomly sorted and marked initially
to be sampled every month (10 plants per occasion). On each occasion, these plants
were inspected and any galls present were collected and brought to the laboratory to
measure their size and colour, followed by dissection. These plants were sampled only
once during the study, and are hereafter termed ‘destructive samples’. The additional
20 T. sellowiana plants were used to evaluate changes in colour and size of the galls.
Their galls were individually marked and on each sampling occasion they were photo-
graphed, until their fate was determined in the field (hereafter termed ‘non-destructive
samples’). The phenology of the plants was determined concomitantly.

In both field and laboratory conditions, galls were photographed with a Sony®

Cyber-Shot DSC-H10 digital camera. To correct for lighting conditions, we used a
WhiBal® (Michael Tapes Design, Melbourne, FL, USA) white balance reference card.
Gall size and colour (RGB pattern) were determined from the corresponding digital
images, using the software AxioVision® Rel. 4.8 (http://www.zeiss.com/microscopy/
en_de/downloads/axiovision.html). Dissections were performed with the aid of a
Leica® M125 stereomicroscope, in order to determine the presence of immature stages
of either the cecidogenous insect or the kleptoparasite, or both. Empty, old galls were
discarded after dissection.Measurements weremade with an ocular micrometer attached
to the stereomicroscope (for corresponding data on larval capsule width, see
Supplementary material, Table 1S).

Statistical analyses

Data for colour and size of galls, and size of larval instars were evaluated for
homogeneity of variance and normal distribution, assessed respectively by Bartlett
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and Kolmogorov–Smirnov tests. The data for gall size and green intensity passed the
tests, and then were linear-regressed. The data obtained for size of larval instars were
not normally distributed, and were then compared by nonparametric Kruskal–Wallis
test, followed by Dunn’s multiple comparison tests. The parametric and nonpara-
metric tests were performed by using the software PAST v.2.08 (http://folk.uio.no/
ohammer/past/), following criteria described by Zar (1999) and Conover (1980),
respectively.

Systematic account

Family GELECHIIDAE Stainton
Subfamily GELECHIINAE Sattler

Tribe Teleiodini Piskunov
Genus Locharcha Meyrick

Type species Locharcha emicans Meyrick by monotypy
Locharcha opportuna Moreira and Becker, new species

(Figures 1–8)

Figure 1. Locharcha opportuna adult, dorsal view: (A) wings spread, pinned; (B) head and
thorax, in detail; (C) wings folded, on Tibouchina sellowiana leaf. Scale bars = 2, 1 and 2 mm,
respectively.

1854 F.A. Luz et al.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
C

am
br

id
ge

] 
at

 0
5:

10
 0

8 
A

pr
il 

20
16

 

http://folk.uio.no/ohammer/past/
http://folk.uio.no/ohammer/past/


Type material

BRAZIL: Centro de Pesquisas e Conservação da Natureza Pró-Mata (CPCN Pró-
Mata; 29°29ʹ16″S, 50°10ʹ60″W; 925 m), São Francisco de Paula Municipality, Rio
Grande do Sul State (RS), Brazil. Adults preserved dried and pinned, reared by
the senior author from galls induced by Palaeomystella fernandesi Moreira &
Becker (Lepidoptera: Momphidae) on Tibouchina sellowiana (Cham.) Cogn.
(Melastomataceae): LMCI 174, 26 March 2012, by G.R.P. Moreira, F.A. Luz
and P. Pollo; LMCI 210, 7–9 March 2013 by G.R.P. Moreira, F.A. Luz and L.T.
Pereira. HOLOTYPE: ♂ (LMCI 210–189), donated to DZUP (29.418).
PARATYPES: 1 ♂ (LMCI 210–45), 2 ♀♀ (LMCI 174–179 and 193), donated
to DZUP (29.419, 29.420 and 29.421, respectively); 1 ♂ (LMCI 174–180), 2 ♀♀
(LMCI 174–40 and 210–57), donated to MCNZ (81.904, 81.905 and 81.906,
respectively); 1 ♂ (LMCI 174–187), 2 ♀♀ (LMCI 174–41 and 176), donated to
MCTP (36.227, 36.228 and 36.229, respectively); 1 ♂ (LMCI 210–64), 2 ♀♀
(LMCI 174–194 and 196), donated to VOB.

Figure 2. Locharcha opportuna adult morphology: (A) wings; (B) male genitalia (arrow indi-
cates glandiductor), lateral view; (C) female genitalia, lateral view; (D) detail of tergal process
(asterisk), dorsal view. Scale bars = 1, 0.2 and 0.5 mm, respectively.

Journal of Natural History 1855
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Figure 3. Male genital morphology of Locharcha opportuna under light and scanning electron
microscopy: (A) genitalia (aedeagus removed), oblique view (slide preparation GRPM 50–63);
(B) gnathos, lateral view; (C) left valve (= glandiductor) detached from tegumen, lateral view;
(D) sicae with anchored aedeagus (pointed by arrow), lateroposterior view; (E) dissected
aedeagus (asterisk indicates everted vesica), lateral view. Scale bars = 1 mm, 50, 100, 100,
200 µm, respectively.

1856 F.A. Luz et al.
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Figure 4. Female genital morphology of Locharcha opportuna under light microscopy: (A)
genitalia, oblique view (slide preparation GRPM 50–65); (B) female signum, internal view.
Scale bars = 250 and 500 µm, respectively.

Figure 5. Locharcha opportuna last larval instar: (A) head chaetotaxy, frontal view; (B)
thoracic and abdominal chaetotaxy, lateral view; (C) head and prothoracic shield, dorsal
view; (D) body, lateral view. Scale bars = 50 µm and 1 mm, respectively.
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Other specimens examined

With the same collection data, deposited in LMCI. Adults, dried and pinned: 6 ♂♂
(LMCI 174–174, 177, 182, 191, 210–62; 174–170, with genitalia in glycerine GRPM
50–24), 5 ♀♀ (LMCI 174–185, 188, 195, 210–46; 174–171, with genitalia in glycerine
GRPM 50–25). Adults, fixed in Dietrich’s fluid, preserved in 70% ethanol: 2 ♂♂
(LMCI 174–206 and 207, with genitalia in glycerine GRPM 50–68 and 69,
respectively); 2 ♀♀ (LMCI 174–210 and 211, with genitalia in glycerine GRPM
50–70 and 71, respectively). Slide preparations, mounted in Canada balsam: genitalia,
1 ♂ (GRPM 50–63), 2 ♀♀ (GRPM 50–64 and 65); wings, 2 ♂♂ (GRPM 50–59 and
60), 2 ♀♀ (GRPM 50–61 and 62); 2 last-instar larvae (GRPM 59–66 and 67).
Immature stages, fixed in Dietrich’s fluid and preserved in 70% ethanol: 12 last-instar
larvae (LCMI 174–55); 9 pupae (LMCI 174–216); 6 dissected galls (LMCI 174–217 to

Figure 6. Scanning electron micrographs of Locharcha opportuna last larval instar: (A) head
and prothorax, lateral view; (B) labrum and mandibles, frontal view; (C) stemmata; (D)
antenna, lateral view; (E) labium and spinneret, ventral view; (F) maxilla, anterolateral view;
(G) distal portion of mesothoracic leg, posterolateral view (arrow indicates spatulate seta); (H)
prothoracic spiracle, lateral view; (I) pseudopodium abdominal A6, mesoventral view. Scale
bars = 200, 100, 100, 20, 20, 20, 20, 20, 100 µm, respectively.

1858 F.A. Luz et al.
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222). In tissue collection, nine larvae (LMCI 174–53 and 57) fixed and preserved in
100% ethanol, at −20°C.

Diagnosis

A gelechiid lineage with larvae, pupae and adults having a clear affinity with the
Teleiodini (sensu Lee and Brown 2008). It is assigned to the (formerly) monotypic
genus Locharcha Meyrick, in having males with very similar wing venation patterns,
and a strongly asymmetrical valva associated with a dome-shaped tegumen
(Clarke 1969). Locharcha opportuna differs from L. emicans Meyrick in having a
different wing colour pattern, uncus subtrapezoidal, tegumen longer than wide, and
saccus not developed.

It is close to Coleotechnites Chambers, sharing males with an asymmetrical valve,
and females with a single spiny, wedge-shaped signum. Locharcha opportuna differs
from the species of Coleotechnites in several characteristics: (1) fore wings with veins

Figure 7. Locharcha opportuna pupa, in dorsal (A), ventral (B) and lateral (C) views, respec-
tively. Scale bar = 1 mm.
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R4 stalked to R5, and M2 stalked to M3; (2) hind wings with vein R5 separate from
M1, and M2 separate from M3; (3) males without hair pencil in anal area of hind
wings; (4) females with anterior margin of sterigma asymmetrical, projecting ante-
riorly as a process on the left side.

Figure 8. Scanning electron micrographs of Locharcha opportuna pupa: (A) clypeal and
mandibular areas (open arrows indicate microsetae), ventral view; (B) abdominal segments
seven and eight (small arrow and arrow head indicate abdominal spiracles seven and eight,
respectively), laterodorsal view; (C) microtrichia of abdominal segment A5, dorsolateral view;
(D) setae of seventh abdominal segment posterior margin, dorsal view; (E) pseudopodium scar
of abdominal segment A6, ventral view; (F) distal portion of abdomen, dorsal view; (G) apical
portion of cremaster seta, dorsolateral view. Scale bars = 50, 100, 10, 20, 50, 100, 10 µm,
respectively.

1860 F.A. Luz et al.
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Description

Adult (Figures 1–4). Male and female similar in size and colour. Small moth, with
fore wing length varying from 5.33 to 7.15 mm (n = 8). Head (Figure 1B): Frons
and vertex mostly cream-white; labial palpus mostly with cream-white scales
tipped with dark grey, terminal segments angled slightly upward; antennae dark
grey; proboscis yellowish brown. Vestiture moderately smooth. Eye relatively
large, rounded; vertical diameter subequal to interocular distance across frons.
Ocellus absent. Antenna filiform, longer than half fore wing; flagellomeres com-
pletely encircled by single, dense row of slender scales. Clypeus with ventral
margin broadly truncate. Pilifers well developed, triangular. Proboscis ~ length
of labial palpus. Maxillary palpus short, smoothly scaled, 4-segmented, bent
anteriorly and upward. Labial palpi three-segmented, long, bent anteriorly and
upward; ratio of segments from base ~1.0: 3.4: 3.4. Thorax: Tegula and mesono-
tum mostly cream-white, mottled with sparse yellowish scales; tegula with dark-
grey scales anteriorly; prothoracic and mesothoracic legs mostly dark grey;
metathoracic legs lighter, mostly covered with cream-white scales tipped with
dark grey. Fore wings (Figures 1A, 2A): dorsally covered with dark-grey scales
along anterior portion and with cream-white scales on posterior margin, forming
two wide, irregularly shaped, longitudinal bands; the cream-white band, mottled
with yellowish scales; ventrally covered by darkish-grey scales; fringe yellowish;
lanceolate, with 12 veins; L/W index ~ 4.3; retinaculum subcostal, with secondary,
adjacent subradial setae in female; discal cell closed, ~ 0.63× length of fore wing;
Sc ending circa middle anterior margin; R 5-branched; R1 ending near two-thirds
of wing margin; R4 and R5 stalked c.1/2 distance from the cell apex; R4+5 and M1

separate; M 3-branched; M2 and M3 stalked near cubitus; CuA 2-branched; 1A
+2A forked basally, extending more than half length of posterior margin. Hind
wings (Figures 1A, 2A): light grey on both sides; fringe mostly light grey and
yellowish on anterior and posterior margins, respectively; with 9 veins, with a
parallel-sided hair pencil at base of anal area; L/W index ~ 4.4, ~ 0.76 fore wing in
length; frenulum a single acanthus in male, with two parallel-sided acanthi in
female; discal cell closed, ~ 0.63× length of fore wing; Sc+R1 ending at circa one-
third of anterior margin; Rs ending circa two-thirds of anterior margin; M 3-
branched, with M1, M2 and M3 separate; CuA 2-branched, CuA1 and CuA2

separate; CuP weakly sclerotized, ending at one-third of posterior margin; 1A
+2A well developed, ending near basis of posterior margin. Legs with tibial spur
pattern 0–2–4; epiphysis present. Abdomen: Mostly covered by cream-white scales;
pregenital segments unmodified.

Male genitalia (Figures 2B, 3A–E). Uncus (Figure 3A) small, subtrapezoidal, sub-
equal in length to gnathos and with distal margin setose; tegumen dome-shaped, basal
width/length ratio c.0.45; gnathos (Figure 3B) falcate; costal part of left valva
(Figure 3C) with bulbous base and distal part slender, long and curved; in locus
(Figure 2B), the distal part directed first to the right, and then upward, contouring the
tegumen dorsally; saccular part of valve absent; right valve not detected; siccae
(Figure 3D) symmetrical, curved mesally and setose, with the aedeagus anchored
mesially; phallic fulcrum cylindrical (Figures 3D, E), middle-sized, with distal margin
ventrally pointed; vesica without cornuti; saccus not developed.
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Female genitalia (Figures 2C, D, 4A, B). Anal papillae laterally compressed, forming
a narrow terminal, setose lobe; apophyses posteriores c.3× length of apophyses
anteriores; sterigma with anterior margin asymmetrical; tergum projecting anteriorly
on the left side as a pointed process (Figures 2D, E, 4A); sternum deeply and
narrowly emarginated medially, bearing the ostium bursae on anterior, rounded
portion, located on the left ventral side; ductus bursae membranous, shorter than
corpus bursae, with ductus seminalis inserted medially; corpus bursae an elongate sac,
wall covered by small, stout spines and bearing anteriorly a single spiny, wedge-
shaped, centrally constricted signum (Figure 4B).

Etymology. From the Latin opportunus [= opportunist]; feminine.

Immature stages

Last larval instar (Figures 5, 6). Body length varying from 3.9 to 5.72 mm (n = 7).
Endophyllous, semiprognathous and tissue-feeder. Head, thorax and abdomen with
setae well developed. Head: light brown (Figure 5C), smooth (Figure 6A); frons
subequal in height and width, extending to circa one-half epicranial notch
(Figure 5A, C); labrum (Figure 6B) shallowly notched, with six pairs of setae of
unequal size; six stemmata (Figure 6C) arranged in C-shaped configuration.
Chaetotaxy (Figure 5A): A group trisetose; L group unisetose; P group bisetose; C
group bisetose; F group unisetose; AF group bisetose; S group trisetose; SS group
trisetose. A1, A3, P1, P2, S2 and S3 about equal in length, longest setae on head; C1,
C2, F1, A2, AF2, L1 intermediate in length; AF1 shorter. Antenna (Figure 6D) two-
segmented; mandibles (Figure 6B) broad, with four teeth and two unequal setae on
outer surface; labium (Figure 6E) with two-segmented palpi, each bearing a seta; first
segment c.8× longer than second segment; spinneret parallel-sided; maxilla
(Figure 6F) prominent.

Thorax and abdomen (Figure 5B–D). Prothoracic shield (Figure 5C) dark brown,
divided longitudinally by indistinct, unpigmented area; anterior and posterior half of
mesothoracic, metathoracic and abdominal segments white and violet, respectively,
giving a banded appearance to the larva (Figure 5D); pinacula small, fuscous; anal
plate (Figure 5D) dark brown; anal fork black, with three major pairs of prongs;
thoracic legs (Figure 5D) dark brown, with a pair of broad bladelike setae
(Figure 6G) ventrolateral to terminal claw. Prolegs (Figure 6I) on A3–A6 and A10
of equal size; crochets in a biordinal, uniserial circle, mesial penellipse. Thorax
chaetotaxy: T1 with D group bisetose, both located on the dorsal shield, D1 shorter
than D2; XD group bisetose, similar in length and both on the dorsal shield; SD
bisetose, laterally on the dorsal shield; L group trisetose, L1 longer than L2; SV group
bisetose, posteroventral to L2, SV1 slightly longer than SV2; V group unisetose. T2
and T3 with D and SD groups bisetose; SD2 shorter than SD1; L trisetose, L3
posterior to L1–L2, similar in length to L1; SV unisetose; V unisetose. Abdomen
chaetotaxy: D group bisetose; A1–A9 with D2 slightly longer than D1, and A10 with
D1 and D2 similar in size; A1–A8 with SD group unisetose, A10 with SD1 and SD2
similar in size; L group trisetose; A1–A8 with SV group bisetose, SV1 slightly shorter
than SV2, SV1 absent in A9; V group unisetose.
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Pupa (Figures 7, 8). Body elongate-oval in dorsal and ventral views, varying from 5.2
to 6.24 mm (n = 8) in length, widest in mesothoracic region; vertex rounded;
frontoclypeal suture weakly defined, concave medially; labrum U-shaped, labial
palpi barely exposed; maxillary palpi short, not extending beyond anterior margin
of eye; maxillae extending distally between sclerites of midlegs; antennae meeting
mesially and reaching apical margin of fore wings; apices of metathoracic legs large,
with distal part wider than antenna. Integument weakly melanized, with a few micro-
setae scattered dorsally on cephalic region (Figure 8A) and abdomen, and on anterior
portion of abdominal segments. Abdominal terga mostly covered with stout spine-
like microtrichia (Figure 8C). Thoracic and abdominal spiracles rounded, with ele-
vated peritreme (Figure 8B); spiracle A8 partially closed. Sternum A6 with a pair of
pseudopodium scars (Figure 8E); the scars on A5 are hidden by the overlying wing.
Abdominal segment A7 posteriorly fringed with several aligned groups of short, stout
setae (Figure 8B, D). Abdominal segments A8–A10 partially fused, with caudal
cremaster bearing a few long, stout, distally coiled setae (Figure 8F, G).

Molecular phylogeny. A total of 621 nucleotide sites were analysed, of which 150
(24%) were variable. In accordance with our phylogenetic hypothesis, Coleotechnites
was recovered as monophyletic in both methods of inference (BI and ML), with high
support values (Figure 9). Because the topologies were identical, we decided to
present only one (BI). Locharcha opportuna was placed as a sister lineage of the
Coleotechnites species included in the analyses, with strong BPP and bootstrap
support values (0.98 and 88, respectively) (Figure 9). The evolutionary divergence
observed between comparisons of pairs of species ranged from 2 to 13% (± 1%)
(Table 2). The distance between the new lineage described herein and Coleotechnites
was 11% (Figure 9). Similarly, the divergence between L. opportuna and the out-
groups (Recurvaria and Exoteleia) was c.12% (± 1%). Finally, the K2P distances
within Coleotechnites indicate that this group also shows significant diversity, as
evidenced by the range of distances (2–8% ± 1%) (Table 2).

Distribution. Locharcha opportuna is known only from the type locality, the Dense
Umbrophilous Forest (= Brazilian Atlantic Rainforest sensu stricto) portions of the
CPCN Pró-Mata, São Francisco de Paula, Rio Grande do Sul, Brazil. As already
mentioned, it occurs in association with fusiform galls (Figure 10A) induced by a
species of Palaeomystela Fletcher (Lepidoptera, Momphidae) on the terminal
branches of Tibouchina sellowiana (Cham.) Cogn. (Melastomataceae), which is
described elsewhere (Luz et al. 2014).

Life history and seasonal abundance. Dissections in the laboratory demonstrated that
field-collected galls having intact walls usually contain a larva of Palaeomystella,
which can be differentiated from those of L. opportuna by their cream-white bodies
(Figure 10B), among other morphological characteristics. Additional galls of this type
left to develop in the laboratory showed that pupation of the cecidogenous larva
occurs inside, within a tied-silk cocoon. Prior to pupation in this case, the last larval
instar builds an operculum (Figure 10D) through which the adult emerges. However,
none of these galls was collected attached to T. sellowiana plants during systematic
sampling. Observations of individual galls under field conditions, on host plants
belonging to the non-destructive sampling group, demonstrated that in fact they are
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dehiscent, later in ontogeny falling to the ground (Figure 10C), where the cecidogen-
ous larva completes its development. Searches for them on the ground near T.
sellowiana trees resulted in collection of many of these operculated galls.

The dissections also showed that galls having open, rounded orifices in the wall
(Figure 10E) usually contained a larva of L. opportuna (Figure 10F). Additional galls
of this type left to develop in the laboratory showed that these larvae are residents
and live solitarily within these galls, feeding intensively on tissues induced to develop
by the Palaeomystella species. They use the wall orifices to discharge their faeces.
Dissection also showed that pupation in this case occurs inside the gall, within a tied-
silk cocoon that is generally covered with faecal pellets (Figure 10G). By following
each gall throughout ontogeny in the non-destructive samples, we found that, in
contrast to the galls containing the Palaeomystella larvae, this modified gall morpho-
type does not fall to the ground, but remains attached to T. sellowiana trees for
months. They progressively dry out, turning black after the L. opportuna emerge, and
are then frequently used as shelters by small arthropods such as collembolans and
acarines.

Figure 9. Bayesian inference tree for the new genus, based on 621 bp of the mitochondrial
cytochrome oxidase c subunit I gene (CO-I). Numbers above branches indicate support values
> 0.8/60 for Bayesian posterior probability (BPP)/bootstrap – for maximum likelihood (ML);
those located below represent the percentage of evolutionary divergence between clades.
Asterisk indicates support < 0.80/60 for BPP and ML, respectively.
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Of the total of 512 galls dissected in laboratory, 164 (32.05%) had intact walls,
containing larva of the cecidogenous insect; 169 (33.0%) had orifices and thus con-
tained a larva or pupa of L. opportuna: the remaining galls had unidentified imma-
tures of either parasitoid wasps (19.92%), predator thrips (9.96%) or cecidophagous
curculionids (5.07%). No gall contained living larvae of both the inducer and L.
opportuna living together, but dead bodies and exuviae (head capsules) of the former

Figure 10. Galls induced by Palaeomystella fernandesi on Tibouchina sellowiana plants, free
from (A–D) and attacked by (E–H) the kleptoparasite Locharcha opportuna. (A) general aspect
of two young, green galls inhabited by cecidogenous larvae, as indicated by the absence of
external orifices; (B) dissected gall showing a cecidogenous larva inside; (C) dehiscent, violet
gall on the ground, bearing a cecidogenous late-instar larva; (D) operculum (indicated by
closed arrow) made by a last instar of the cecidogenous larva on a dehiscent gall before
pupation, external view; (E) violet gall inhabited by a kleptoparasite larva, as indicated by
the presence of two orifices (open arrows); (F) dissected gall showing a kleptoparasite larva
inside; (G) dissected gall showing a kleptoparasite pupal cocoon inside (covered by larval faecal
pellets, indicated by asterisk); (H) old, empty gall, left attached to a T. sellowiana plant after the
kleptoparasite emergence. Scale bars = 4, 2, 2, 2, 4, 4, 4, 4 mm, respectively.
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were found in a few galls that contained living larvae of the latter. The number of
galls found with two or more larvae of L. opportuna was negligible.

The variation in the frequency of different instars in relation to gall size and
colour revealed that early instars (II and III) of the cecidogenous species were found
inside green galls, and the later ones (IV) in galls with a colour spectrum ranging from
green to violet (Figure 11A). We presume that galls containing first-instar larvae of
the cecidogenous species were not detected in our sampling because of their very
small size. Head-capsule exuviae from the first instar were frequently found inside
galls with a second instar inside, and these were the smallest galls sampled. In
contrast, larvae of the kleptoparasite, from all instars, were found primarily in violet
galls (Figure 11B).

Within the continuum from green to violet-coloured galls found in the field
(Figure 12A), green galls that were dissected had predominantly cecidogenous larvae
inside, and the violet ones contained L. opportuna (Figure 12B). The smallest field-
collected galls contained no larvae of the latter (Figure 12C). We also found a
significant correlation between gall size and colour; taking all the galls into account,
the intensity of green decreased and the violet increased with the increase in the size of
the galls (Figure 12D).

Galls containing either cecidogenous larvae or the kleptoparasite ranged in
number from 57 (April 2012) to three (August 2012) per sampling occasion (mean
± standard deviation = 23.78 ± 4.36 per occasion), which correspond to 7.12 and 1.5
per plant per occasion, respectively (= 4.49 ± 2.00 galls per plant per occasion).
Young, small galls containing cecidogenous larvae began to appear during early
spring (September) when the T. sellowiana trees began to sprout, and reached a

Figure 11. Variation in green colour intensity of Tibouchina sellowiana galls (median and
corresponding quartiles) in relation to larval ontogeny, when considered the presence of larva
either of the cecidogenous insect (A; = 10, 81 and 64 individuals, respectively, for instar II to
IV) or the kleptoparasite (B; = 29, 38, 32, 64 individuals, respectively for instars I to IV) larvae
inside. Bars followed by the same letter do not differ statistically (Kruskal–Wallis test, followed
by Dunn’s multiple comparison tests).
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clear peak in density during the following autumn, which coincides with the flowering
season (April) (Figure 13). The existence of a second, shorter density peak during
October suggests that two generations may occur per year, and this possibility should
be further investigated. The variation in abundance of the kleptoparasite followed
that of the cecidogenous species, with the corresponding density peaks occurring in
succession.

Discussion

Taxonomy

Male genitalia in gelechiid moths can be very specialized by reduction, modification
and asymmetry; however, females in general have the ostium bursae ventromesial,
rarely located laterally or dorsally (Hodges 1999). It is uncertain whether strongly
modified female sterigma as here described for Locharcha opportuna sp. n. has
evolved de novo within the Teleiodini, which should be further investigated. On the
other hand, modifications in male valvae such as those described here have been
reported for other teleiodinids, including the closely related genera Recurvaria
Haworth, Exoteleia Wallengren, Coleotechnites Chambers (Lee and Brown 2008),
and Locharcha Meyrick (Clarke 1969). In species of Coleotechnites, the valvae are
strongly asymmetrical, with the right valve reduced (Hodges and Stevens 1978; Lee
and Brown 2008). Similarly to the illustration provided by Clarke (1969) for
Locharcha emicans Meyrick, we could not detect any indication of the presence of

Figure 12. Variation in colour and size among galls induced by Palaeomystella fernandesi on
Tibouchina sellowiana plants, and corresponding use by either cecidogenous or kleptoparasite
moths at CPCN Pró-Mata (April 2012 to June 2013). (A) Gradient from green- to violet-
coloured for galls that were studied; (B, C) abundance of cecidogenous larvae (closed bars;
total = 155 individuals) and kleptoparasite (open bars; total = 163 individuals) inside in relation
to intensity of green colour and size of green galls, respectively; (D) linear regression between
size and intensity of green colour on galls (y = 0.67x + 8.77, R2 = 0.152, p < 0.0001, n = 348).
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the right valve in the genitalia of L. opportuna, which may have been lost. However,
as described by Ponomarenko (2008), these highly modified structures are glandular
in nature, which she termed ‘glandiductors’. Also, they may not be homologous to
any part of the valva, which thus would have been fused to other genital structures.
The rounded, proximal basis of these structures is secretory in nature, and the
sclerotized, slender distal portion has an opening at the apex; we confirm that this
structure is present in the material studied here. Ponomarenko (2008) concluded that
these genital glands could be considered as a basal synapomorphy for the subfamily
Gelechiinae, thus limiting their taxonomic use at the generic level.

The genetic distances resulting from the molecular phylogenetic analyses gave
further support to our hypothesis that L. opportuna is a distinct species. Furthermore,
we found evolutionary distance values similar to those observed between
Coleotechnites and the outgroup (Recurvaria and Exoteleia), corresponding to a
generic level of divergence, i.e. c.10% (for a discussion of this threshold in
Lepidoptera, see Wiemers and Fiedler 2007). Particularly in this group of gelechiids,
the interspecific variation exceeds the intraspecific variation by at least one order of
magnitude. We also found that the new species is more closely related to
Coleotechnites than to Recurvaria and Exoteleia. Coleotechnites was previously recog-
nized as closely related to teleiodinid genera existing in Asia, Europe, and North
America (Lee and Brown 2008). However, it has not been compared with other
related lineages existing in South America, such as the poorly known Locharcha

Figure 13. Seasonal abundance of cecidogenous (Palaeomystella fernandesi, dashed line) and
kleptoparasite (Locharcha opportuna, solid line) larvae in galls (total = 164 and 169 individuals,
respectively) induced on Tibouchina sellowiana plants at CPCN Pró-Mata, from April 2012
through June 2013. Arabic numbers from 1 to 14 represent 30-day sampling intervals. Upper
horizontal bars indicate host plant phenological phases: red, flowering; green, fruiting; blue,
dormancy; black, forming new shoots.
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Meyrick and Synactias Meyrick. These are monotypic genera, whose wing-colour
pattern and venation, and genitalia were illustrated by Clarke (1969). Unfortunately,
the female of the type-species of the former (L. emicans Meyrick) is unknown, which
prevents comparison for both sexes regarding the species described here. We also
found similarities, for example in the wing colour pattern and aspects of the female
genitalia (corpus bursae covered with small, stout spines), existing between L. oppor-
tuna and the type-species of the latter (Synactias micranthis Meyrick). In this case, the
male is unknown, which again prevents further comparison. Thus, it is almost certain
that the species described here belongs to the Teleiodini (sensu Lee and Brown 2008),
but its generic status may change in the future upon revision of this group in the
Neotropical region.

Locharcha opportuna has wing venation similar to those of species of Exoteleia,
but differs in the hind wing pattern, M2 and M3 being connate in the latter.
Furthermore, the male valvae are symmetrical and the female bursa lacks a signum
in species of Exoteleia (Lee and Brown 2008). Similarities found in the larval and
pupal stages, such as the maxillae longer than the prothoracic legs and rows of setae
on the posterior margin of abdominal segment A7, also suggest that L. opportuna is
closest to Coleotechnites. The species of Exoteleia have pupal maxillae shorter than
the prothoracic legs; in Recurvaria and Coleotechnites these structures are longer than
the prothoracic legs (Adamski et al. 2010). In Recurvaria, however, the caudal
portion of the mesothoracic legs is narrower than the antennae; they are wider than
the antennae in Coleotechnites and L. opportuna. Contrary to the suggestion of Lee
and Brown (2008) and Adamski et al. (2010), and in accordance with the present
description, the abdominal segment VII in Coleotechnites pupae are fringed with setae
caudally; these structures are also present in Recurvaria but absent in species of
Exoteleia (Patočka and Turčani 2005). As discussed below, kleptoparasitic lifestyles
have been described for other gelechiid genera, but as far as we are aware, not for
Coleotechnites or closely related lineages. Additional collections that we made in the
Atlantic Rainforest indicate the existence of at least a second, undescribed species
congeneric to L. opportuna, with the same lifestyle.

Life history and seasonal abundance

In conjunction, the present observations demonstrated that the galls of T. sellowiana
are induced only by Palaeomystella fernandesi, and that L. opportuna is a kleptopar-
asite. Behavioural observations confirmed that the latter feeds upon tissues induced to
develop by the former. The absence of L. opportuna in the smallest field-collected
galls demonstrated that this species enters the systems later in gall ontogeny.
Additional observations made in the laboratory by the senior author suggest that
oviposition occurs on or near the gall, the larva entering the gall immediately after
hatching, and this possibility should be better explored. The presence of dead bodies
and head capsules of P. fernandesi inside the galls indicates that the kleptoparasite
kills the cecidogenous larva after entering the gall. As reported by Caltagirone (1964),
for a kleptoparasitic cosmopterigid on galls induced by Pontania (Hymenoptera:
Tenthredinidae) on Salix (Salicaceae), the larva may prey on any insect encountered
in the gall, and this possibility should be examined for the case studied here. The
presence of only one larva within a gall, in most cases, demonstrates that L. oppor-
tuna has a solitary habit. Furthermore, the presence of head-capsule exuviae of the
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same instar, which would of course belong to different larvae, was extremely rare,
which suggests that the larva of L. opportuna uses a single gall during ontogeny, and
has low, if any, mobility.

There was no indication that the galls change in colour, size or shape due to the
presence of the kleptoparasite inside, as is the case for other cecidogenous species
when attacked by inquilines (e.g. Van Noort et al. 2007) and parasitoids (e.g. Dias
et al. 2013). The negative correlation between gall size and green colour, when both
gall types (free and attacked by the kleptoparasite) were included in the analysis,
demonstrates that in this case the colour change is a phenomenon tied to additional
factors related to gall ontogeny, whose underlying mechanisms remain unknown.
Changes in colour from green to violet such as found in P. fernandesi galls have been
associated in several plant parts and tissues with the presence of anthocyanins, as a
response to light stress (Gould et al. 1995; Chalker-Scott 1999; Barp et al. 2006).
Inbar et al. (2010) suggested that the violet colour of galls may be also involved with
protection of the inducers from natural enemies, which does not seem to be the case
for the system studied here. Thus, L. opportuna may choose violet galls, either
because they are more attractive to females during oviposition or because they
contain larger amounts of resources since they are older and larger; these hypotheses
are not mutually exclusive, and should be further tested.

As expected, P. fernandesi galls begin to increase in number during the spring,
with the new growth of shoots of T. sellowiana trees, since gall induction depends on
host-tissue reactivity (Raman 1994; Yukawa 2000). The large numbers of galls
attacked (circa half of all field-collected galls; almost all of the galls during the
density peaks in the first season) further indicate the existence of a high level of
specialization for this kleptoparasitic species in relation to P. fernandesi galls. An
attack index of c.30% was reported by Hawkins and Goeden (1984) for another
kleptoparasitic gelechiid, associated with galls induced by Asphondylia (Diptera:
Cecidomyiidae) on Atriplex (Chenopodiaceae) in southern California, USA. The
increase in density, subsequently to that of the inducer, shows that L. opportuna
responds according to the variation in density of the latter. The corresponding pattern
may fit that known for predator/prey systems (e.g. Varley et al. 1973; Townsend
et al. 2003), which should be confirmed by studies with a longer duration than that
adopted here.

In summary, our study demonstrates with descriptive and quantitative data, as a
case study for a new species of gelechiid, the existence of its kleptoparasitic habit in
galls induced by a momphid lepidopteran in Melastomataceae. It differs primarily
from other guilds, such as inquilines, as the kleptoparasite larva does not coexist with
the cecidogenous larva in a given gall; there is no production of new tissues in this
case. The kleptoparasite takes the gall environment over and feeds thereafter intern-
ally on the tissues that were induced to develop by the cecidogenous larva, without
changing the external shape and size of the gall. It does not qualify within the
cecidophage guild either, since it has low mobility, usually attacking only one gall
internally, where it completes its life cycle; and may also be carnivorous.

There are many methodological, taxonomic and ecological implications related to
this complex interaction. For example, potential misidentification of the true gall
inducer should be taken into account, since in this case later instars of cecidogenous
species may occur in lower numbers, as their galls are dehiscent, completing the
development on the ground. Also, as galls bearing L. opportuna remain attached
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longer to the host, the corresponding role of this kleptoparasitic species to indirectly
enhance use by successor species in P. fernandesi galls should be investigated. Thus,
our results not only clarified the specialized interactions existing in this peculiar
momphid/gelechiid gall system, but also provided a solid integrative framework
that could be applied to characterize the taxonomy, life history and ecology of
other kleptoparasitic moths and beyond.
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