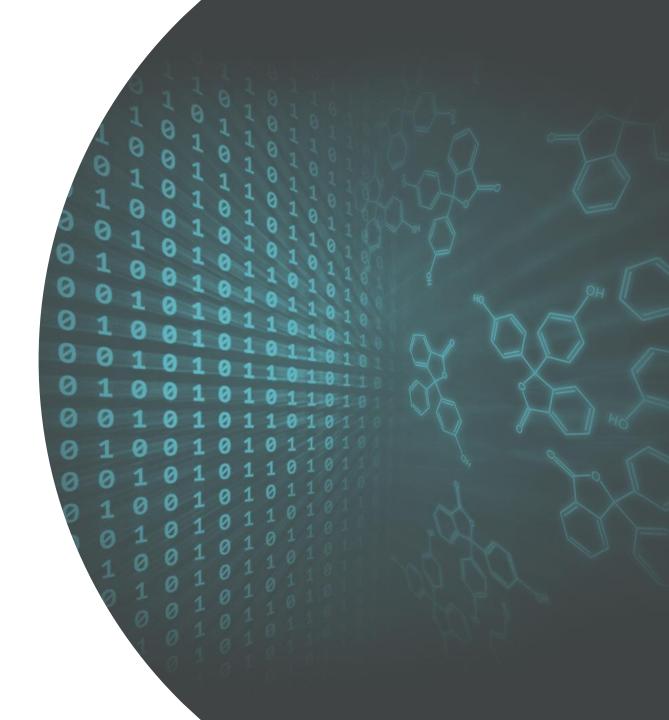


The Influence of Nonadditivity on Machine Learning and Deep Learning Models

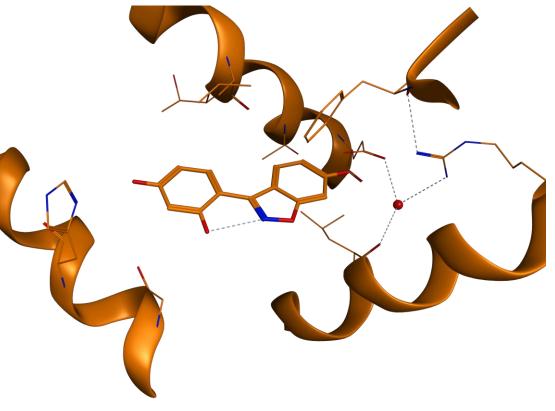
Eva Nittinger



Where does Nonadditivity Occure?

• Assumptions:

- Similarity principle: "Compounds with similar structure have similar activities"
- Linearity and additivity in the chemical space
- Precondition for extrapolation and prediction of unknown data from known data

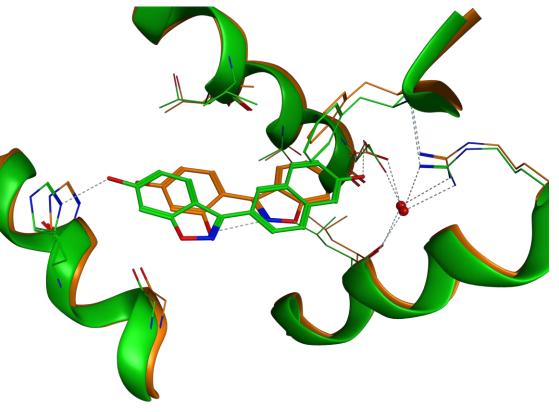


Estrogen receptor ß ligands (1u3q, 1u3s)

Where does Nonadditivity Occure?

• Assumptions:

- Similarity principle: "Compounds with similar structure have similar activities"
- Linearity and additivity in the chemical space
- Precondition for extrapolation and prediction of unknown data from known data

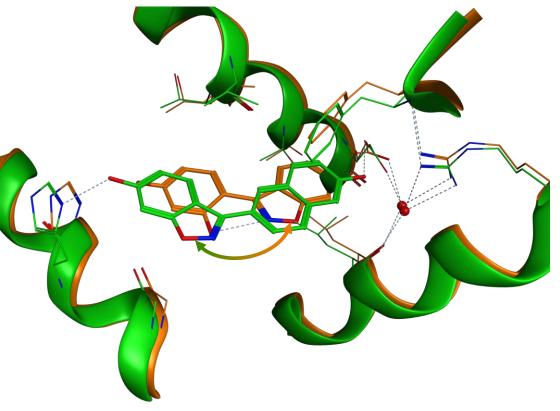


Estrogen receptor ß ligands (1u3q, 1u3s)

Where does Nonadditivity Occure?

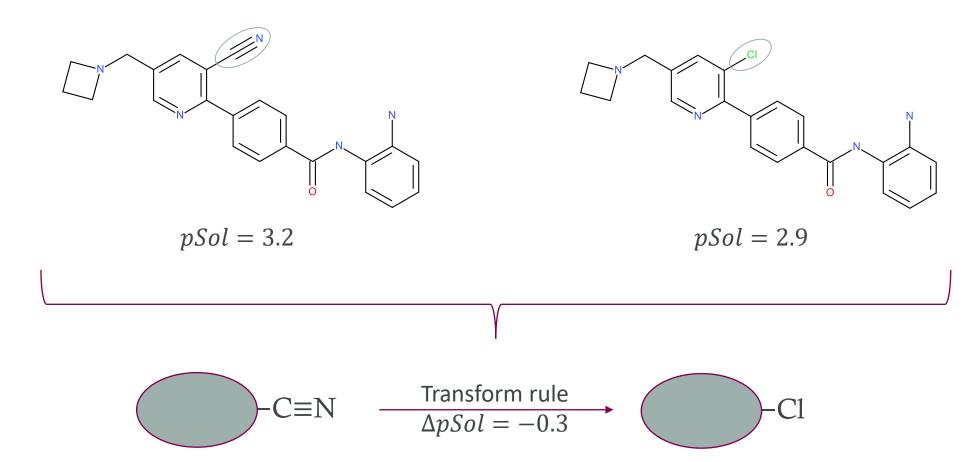
• Assumptions:

- Similarity principle: "Compounds with similar structure have similar activities"
- Linearity and additivity in the chemical space
- Precondition for extrapolation and prediction of unknown data from known data

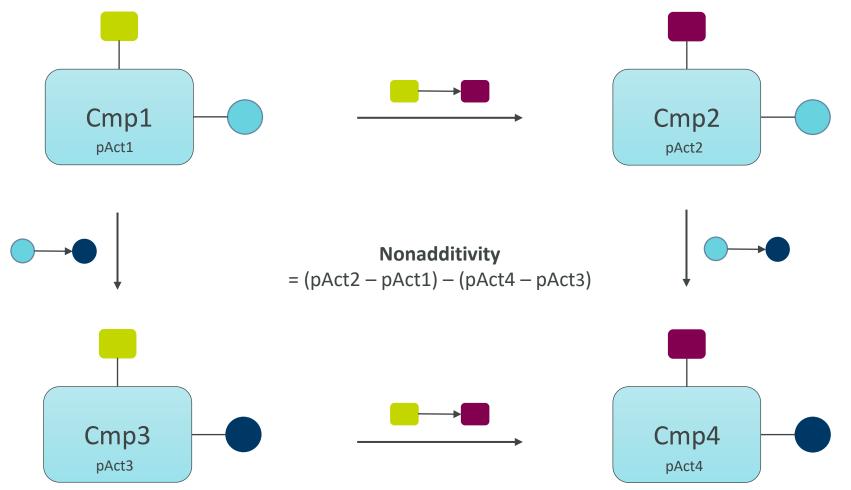


Estrogen receptor ß ligands (1u3q, 1u3s)

NonAdditivity Analysis – What is it and How to Calculate it?



NonAdditivity Analysis – What is it and How to Calculate it?



Method and Data Selection

- NAA analysis is based on binding assays
 - How often does NA occure?
- MMP analysis was performed on physchem properties
 - Can we predict (non)additivity?
- Nonadditivity analysis performance
 - NAA GitHub code provided by C. Kramer¹
 - Based on MMP analysis open-source code by A. Dalke²
 - Implementation of MMPA algorithm from Hussain and Rea³

- 1. Kramer, C. Nonadditivity Analysis. J. Chem. Inf. Model. 2019.
- 2. Dalke, A. *et al*. J. Chem. Inf. Model. **2018**.

7

3. Hussain, J.; Rea, C. J. Chem. Inf. Model. 2010.0

NAA analysis data

	AstraZeneca	ChEMBL
Inital nof assays	22,317	1,125,387
Initial nof measurements	76,663,091	15,504,603
\downarrow Filtering and Cleaning 🦼		
Final nof assays	6,224	13,620
Final nof measurements		3,625,044
Final nof compounds	1,221,623	799,860

MMP analysis data

	Nof cpds w w/o outlier	# multi measures	# stereo- duplicates
LogD	215418 214320	18429	6510
Solubility	226955 226189	21444	5527
Permeability	18076 18051	2282	646
Clearance	179637 179495	24493	5408

Relevance of Experimental Uncertainty

 $\Delta \Delta pAct = \Delta \Delta pAct_{true} + \Delta \Delta pAct_{noise}$

 $\Delta\Delta pAct_{noise}$

$$= \sqrt{var(\varepsilon 1) + var(\varepsilon 2) + var(\varepsilon 3) + var(\varepsilon 4)}$$
$$= \sqrt{4 \cdot var(\varepsilon)} = 2\sigma_{\mathcal{E}}$$

Experimental uncertainty estimate

- 0.5 log units for public data¹
- 0.2 0.3 log units for in-house pActivity data²

2022/06/13

Experimental uncertainty threshold as indicator for NA

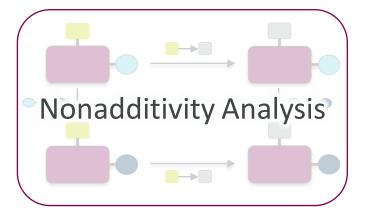
^{1.} Kramer, C. et al. The Experimental Uncertainty of Heterogeneous Public Ki Data. J. Med. Chem. 2012.

^{2.} Kalliokoski, T. et al. Comparability of Mixed IC50 Data-a Statistical Analysis. PLoS One 2013.

NAA Results

How do inhouse and public data compare?

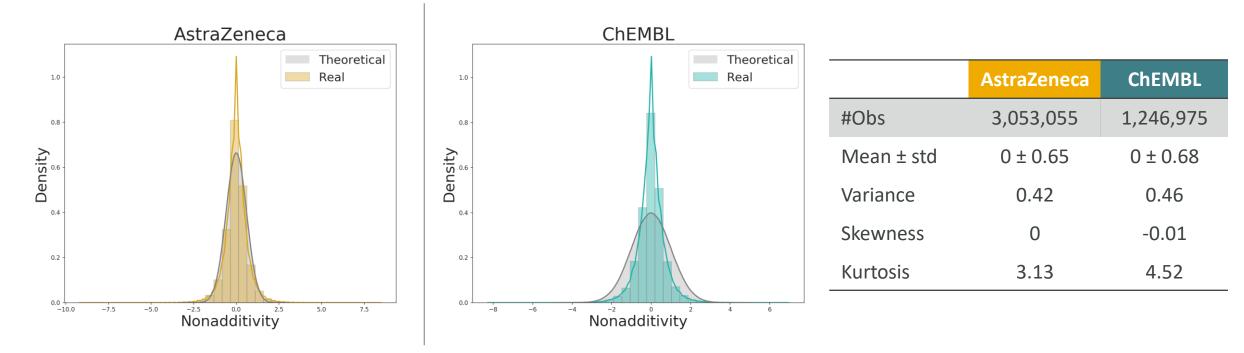
How often does nonadditivity occur? Is it significant or neglectable?



How does nonadditivity influence machine learning?

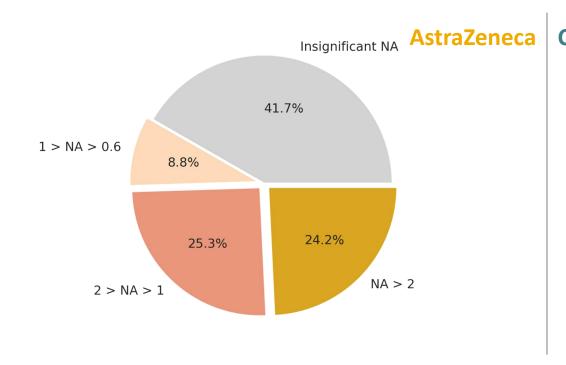
How often can nonadditivity be observed in tests/DTC/compounds?

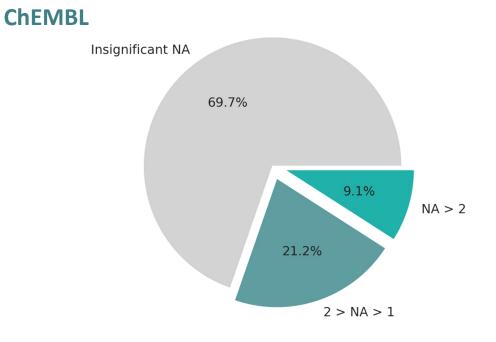
Nonadditivity – Comparison of Inhouse and Public Data



- Non-normal distribution for both data sets
 - Kurtosis, i.e. 'tailedness' is significantly large
- NA distributions are not different from each other

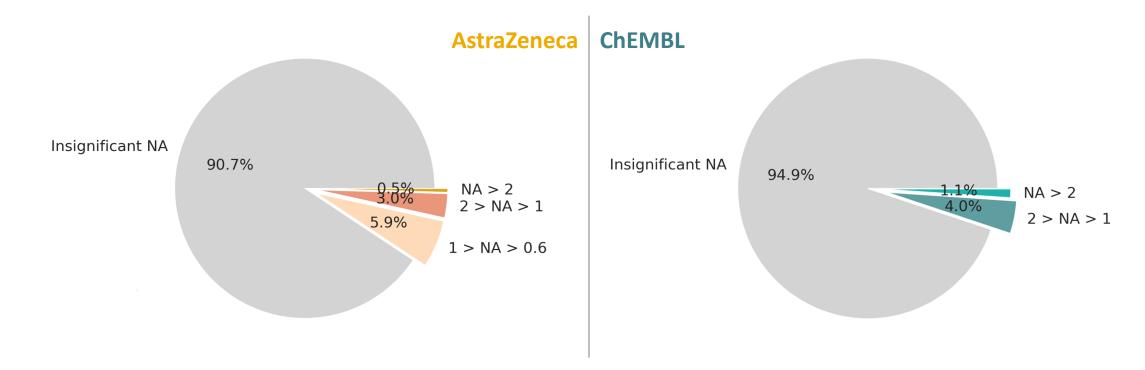
Data Comparison – Nonadditivity in Tests





- Inhouse data: 1 out of 4 tests shows strong NA
- Public data: 1 out of 10 tests shows strong NA

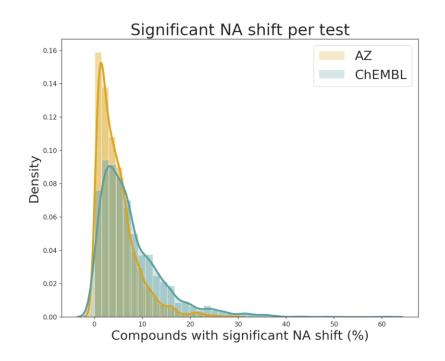
Data Comparison – Nonadditivity in Compounds



- Inhouse data: 9.4% shows significant NA
- Public data: 5.1% shows significant NA

Nonadditivity – Conclusion Part I

- AZ data indicates that nonlinearity frequently occurs in assays
 - It has to be examined carefully: derive structural explanation or reveal measurement errors
- Less nonlinearity observations in ChEMBL
 - Maybe due to the different cut-off for experimental uncertainty
 - Because the assays often have less compounds, and thus less matched squares
 - Publication bias, i.e. negative data are less often reported



Influence of Nonadditivity on Machine Learning

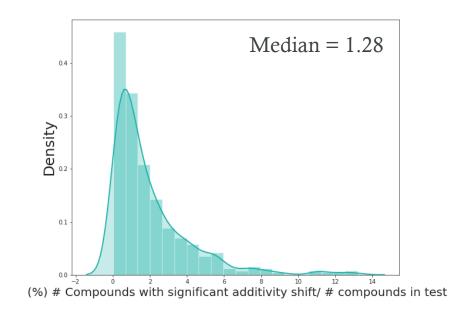
Automatic Generation of Machine Learning Models

- Optuna¹ framework for automatic extensive hyper parameter optimization
- SVM and RF as robust baseline models²
- 500 trial runs with 5-fold cross-validation

ChEMBL data	# Cpds	# Cpds with significant NA (%)	# Cycles	# Cycles with significant NA (%)
1613797	772	73 (1.2)	6,245	694 (11.1)
1614027	2,892	69 (2.4)	4,691	582 (12.4)
1613777	3,512	122 (3.5)	8,600	1606 (18.7)

• Four model setups:

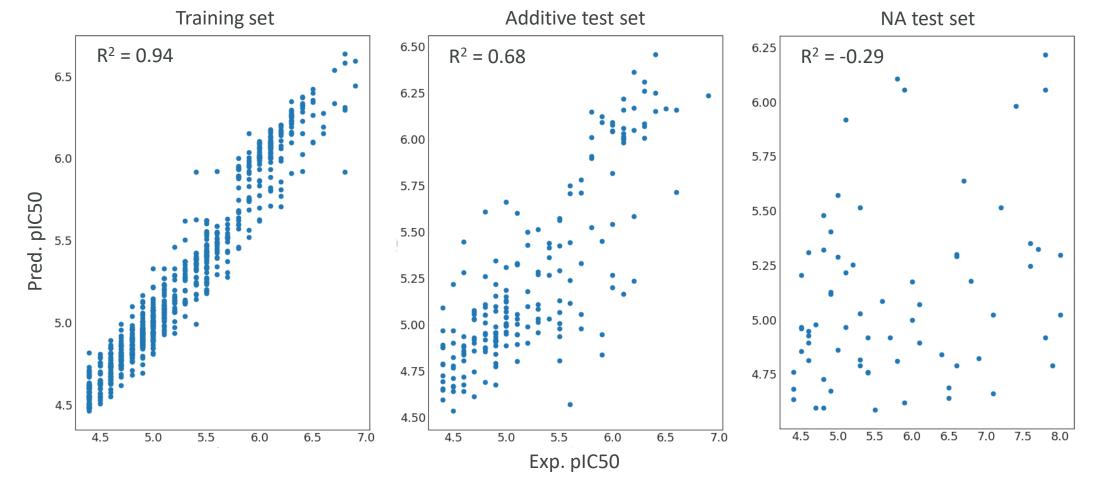
1: No NA, 2: Q1, 3: Median, 4: Q3



^{1.} Akiba, T. et al. Optuna: A Next-Generation Hyperparameter Optimization Framework. ACM SIGKDD, 2019.

^{2.} Pedregosa, F. et al. Scikit-Learn: Machine Learning in Python. J. Mach. Learn. Res. 2011.

• RF performance for ChEMBL1614027 (#2,892)



	SVM			RF				
ChEMBL data (#measures)	Test r ² (RMSE)	Test N	ЛСС	Test r ² (I	RMSE)	Test N	ICC
(#ITCusures)	A*	NA [#]	A*	NA [#]	A*	NA [#]	A*	NA [#]
1613797 (772)	0.05 (0.33)	-0.35 (1.22)	0.14	0.07	0.06 (0.33)	-0.27 (1.19)	0.06	0.22
1614027 (1024)	0.68 (0.34)	-0.29 (1.26)	0.54	0.08	0.68 (0.34)	-0.29 (1.26)	0.53	0.20
1613777 (3511)	0.24 (0.69)	-0.47 (1.33)	0.49	0.00	0.24 (0.69)	-0.37 (1.29)	0.40	-0.01
Tostdata with (*) addit	. ,		0.45	0.00	(0.69)	(1.29)	0.40	0.0

Testdata with (*) additive and (#) NA data only

• Consistent drop in r² and rise in RMSE from additive to NA test data

- Both for SVM and RF
- Binary classification: drop for majority in MCC

		SVM			RF		
ChEMBL data (#measures)	Test r² (RMSE)	Test	MCC	Test r ² (RMSE)	Test MCC	
(#Incasures)	A*	NA [#]	A^*	NA [#]	A [*] NA [#]	A [*] NA [#]	
1613797 (772)	0.05 (0.33)	► -0.35 (1.22)	0.14	\ 0.07	0.06 - 0.2 (0.33) (1.19	7 0.06 才 0.22	
1614027 (1024)	0.68 (0.34)	► -0.29 (1.26)	0.54	\ 0.08	0.68 1 -0.2 (0.34) (1.26	9 0.53 \) 0.20	
1613777 (3511)	0.24 (0.69)	► ^{-0.47} (1.33)	0.49) 0.00	0.24 - 0.3 (0.69) (1.29	7 ●) 0.40 → -0.01	
Testdata with (*) addit	tive and (#)	NA data only					

• Consistent drop in r² and rise in RMSE from additive to NA test data

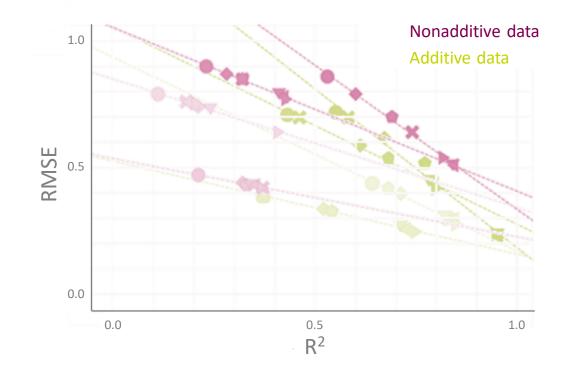
- Both for SVM and RF
- Binary classification: drop for majority in MCC

	RF (MCC for test)					
ChEMBL data	Q0 (0.0%) [*]	Q1 (0.6%) [*]	Median (1.3%) [*]	Q3 (2.6%)*		
1613797	0.22	0.16	0.16	0.16		
1614027	0.20	0.20	0.12	0.10		
1613777	-0.01	0.11	-0.03	-0.05		

* Test set size for Q0 differs from Q1/Median/Q3.

- Adding different levels of NA data to the training
 - No significant differences for the different training sets
 - Reasons:
 - 1. Difficulty to learn from NA examples
 - 2. Too few examples included in training -> but realistic number as would be expected

MMP Results



Experimental Uncertainty

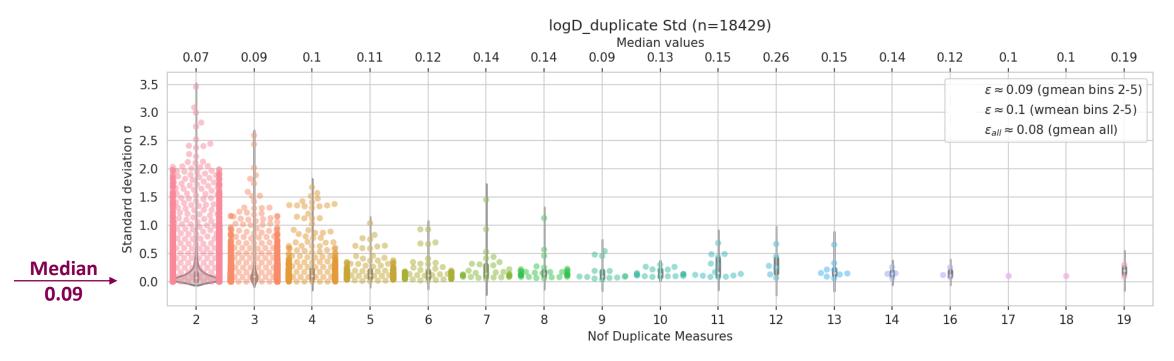
What are the experimental errors for inhouse phys-chem properties?

How reliable is the data?

What can I expect from predictive models?

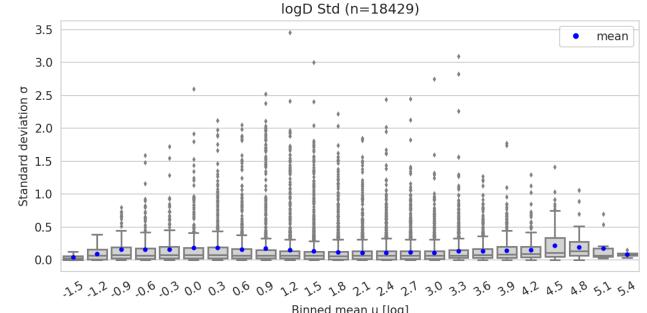
Experimental Error Estimate for logD

- 1. Binning by number of measurements available
- 2. Calculation of standard deviation
- 3. Generation of boxplots



Standard Deviation of Assay is Nonlinear

- Standard deviation varies for the experimental range
- Careful examination of error estimate necessary
- Regression model may only make sense for a defined experimental range



Conclusions – R^2_{max}

	Exp. Uncertainty for Multi Measures	$\mathbf{R^2_{max}} = 1 - \left(\frac{uncertainty\ in\ activity}{stdev\ of\ activity}\right)^2$
LogD	0.1	0.993
Solubility	0.26 (~2 fold)	0.935
Permeability	0.22 (~2 fold)	0.936
Clearance – Hu Mics	0.12	0.947

- Models for all assays can achieve an R^2 of > 0.9
 - Measurements of stereo duplicates are slightly more consistent, i.e. have a smaller error, than duplicate measurements
- A model for logD assay could achieve an almost perfect $R^2 \sim 0.99$

Hypothesis

MMPs are the easiest changes and thus should be predictable

MMP Data

Property	Nof cpds	Nof cycles	Cpds with significant NA*
logD	207306	191605	25318 (12.21 %)
Solubility	219987	184116	28072 (12.76 %)
Permeability	17257	13977	916 (5.31 %)
Clearance	172947	121941	21750 (12.58 %)

* significance threshold determined by two times the experimental uncertainty

4 data sets

- Set 1 all data
- Set 2 MMPs
- Set 3 additive MMPs
- Set 4 nonadditive MMPs

ML/DL methods

- Qptuna
 - PLS, RF, SVR, XGBoost
- Directed Message Passing Neural Network (D-MPNN)
 - Single and multi-task setting

112 model trained

MMP Data

	Property	Data	Nof cpds	Training	Test
Qptuna model training [*]		Set 1 (all data)	207306	165844	41462
 300 iterations per model 	logD	Set 2 (all MMPs)	187162	149729	37433
· · · · · · · · · · · · · · · · · · · ·	logD	Set 3 (MMPs A)	47380	37904	9476
 3-fold cross validation on training to avoid 		Set 4 (MMPs N)	24775	19820	4955
overfitting		Set 1 (all data)	219987	175989	43998
 Selection of best parameters and retraining on 	Solubility	Set 2 (all MMPs)	196451	157160	39291
full data set		Set 3 (MMPs A)	45976	36780	9196
		Set 4 (MMPs N)	27650	22120	5530
		Set 1 (all data)	17257	13805	3452
DNN model training	Dormoshility	Set 2 (all MMPs)	14612	11689	2923
 Single task: trianing on individual property 	Permeability	Set 3 (MMPs A)	4443	3554	889
data		Set 4 (MMPs N)	909	727	182
		Set 1 (all data)	172947	138357	34590
 Multi task: training on union of property data 	Clearance	Set 2 (all MMPs)	155043	124034	31009
 Hyperparameter optimization using Bayesian 	Clearance	Set 3 (MMPs A)	33755	27004	6751

• Hyperparameter optimization using Bayesian optimization provided by chemprop

4295

Set 4 (MMPs N)

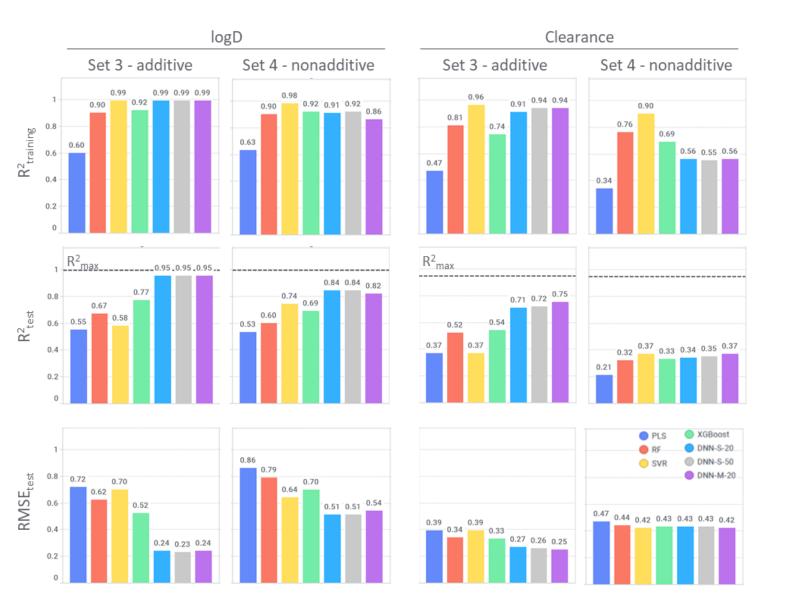
A – additive data; N – nonadditive data

21471

17176

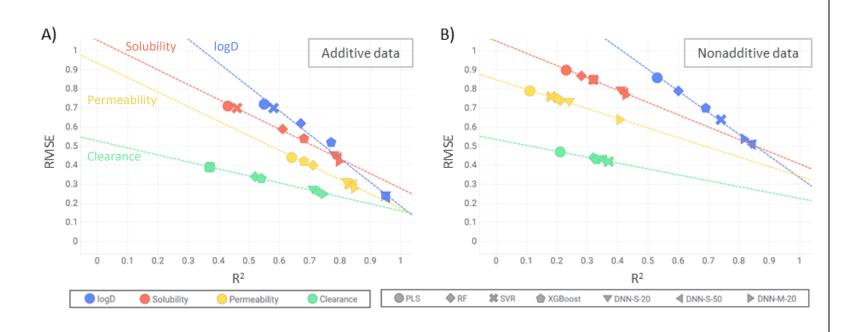
ML/DL Results

- Benchmark model PLS has worst performance
- DL models give best results (highest R², lowest RMSE)
- logD: nonadditivity has lower effect on performance
- Clearance: greater drop in performance due to nonadditive data
 - Similar results for solubility and permeability (R² < 0.43)



MMP – Results

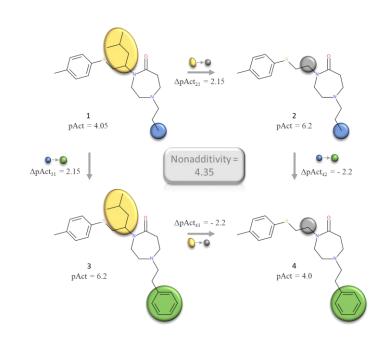
Performance Metric for Different ML/DL Models



 R² and RMSE are significantly worse for nonadditive data

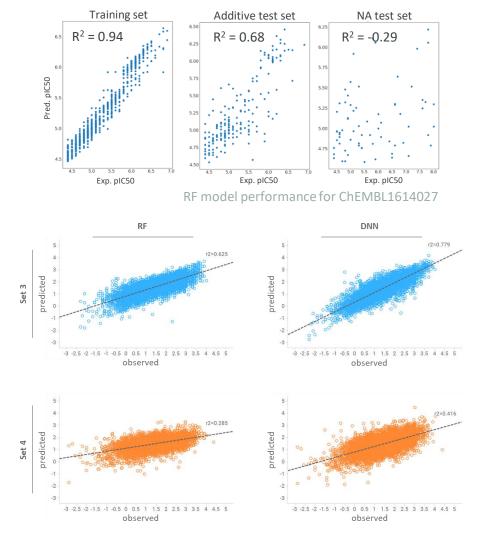
Conclusions and Future Work

- Detection of non-linearity in data
 - Important for further use, i.e. model building
- Significant number of compounds with NA in public and inhouse data
- ChEMBL data shows fewer NA
 - Reasons may be the lower number of compounds/test or the different experimental uncertainty cut-off
- NA data cannot be correctly predicted easily in ML models
 - DL, i.e. non-linear, models also fail to predict nonadditivity



Conclusions and Future Work

- Detection of non-linearity in data
 - Important for further use, i.e. model building
- Significant number of compounds with NA in public and inhouse data
- ChEMBL data shows fewer NA
 - Reasons may be the lower number of compounds/test or the different experimental uncertainty cut-off
- NA data cannot be correctly predicted easily in ML models
 - DL, i.e. non-linear, models also fail to predict nonadditivity

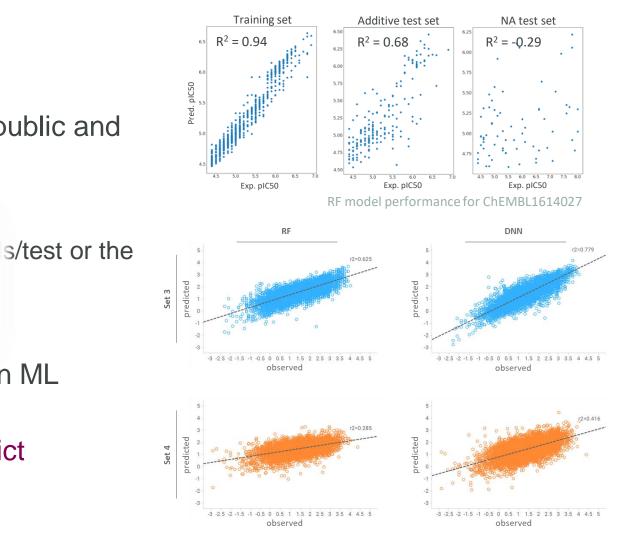


Conclusions and Future Work

- Detection of non-linearity in data
 - Important for further use, i.e. model building
- Significant number of compounds with NA in public and inhouse data

 ChE
 NA analysis should be considered regularly during CADD and for training of ML models.

- NA data cannot be correctly predicted easily in ML models
 - DL, i.e. non-linear, models also fail to predict nonadditivity



Gogishvili, D.; Nittinger, E.; Margreitter, C.; Tyrchan, C. <u>Nonadditivity in Public and Inhouse Data: Implications for Drug Design.</u> J. Cheminform. 2021, 13 (1). Kwapien, K.; Nittinger, E.; He, J.; et al. Implications of Additivity and Nonadditivity for Machine Learning and Deep Learning Models in Drug Design, submitted.

Supplementary

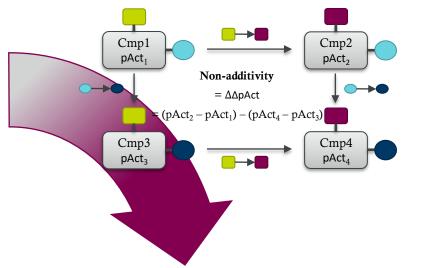
Non-additivity and its influence on ML performance

NA plays a significant role and has to be considered on a regular basis in CADD

Assumption:

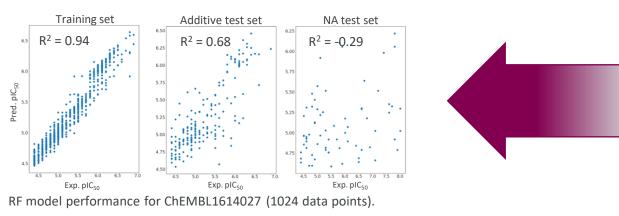
- Similarity principle: "Compounds with similar structure have similar activities"
- Linearity and additivity in the chemical space
 - Precondition for extrapolation and prediction of unknown data from known data

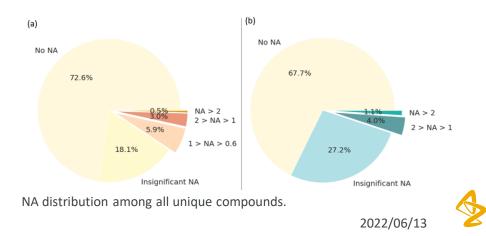
Dr. Eva Nittinger



NA in public and inhouse data

- 9.3% of inhouse and 5.1% of public of compounds show significant NA





*Influence of NA on ML*Data with NA cannot be predicted accurately

- Model performance does not increase with NA training data

logD Std (n=18429)

The Influence of Nonadditivity on ML and DL Models

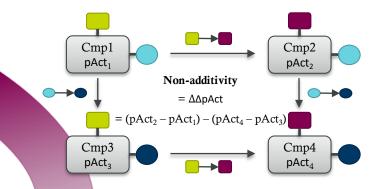
Even nonlinear model cannot accurately model NA data. NA has to be considered on a regular basis in CADD.

Assumption:

- Similarity principle: "Compounds with similar structure have similar activities"
- Linearity and additivity in the chemical space
 - Precondition for extrapolation and prediction of unknown data from known data

3.5

1.0

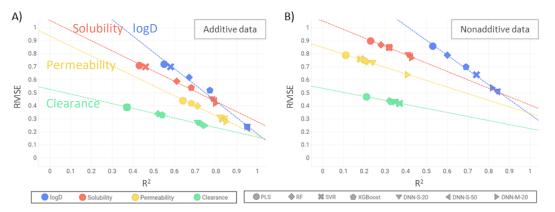


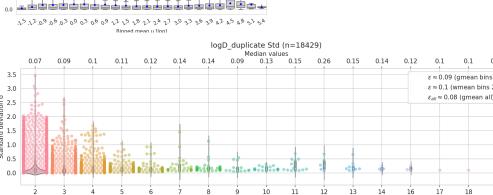
Experimental Uncertainty & R²_{max}

- Standard deviation varies for the experimental range
- Models for all assays can achieve R² of > 0.9

2022/06/13

- Significant rise in RMSE and lower R² for NA data
- DL models that are nonlinear cannot model NA data





Nof Duplicate Measure

Confidentiality Notice

This file is private and may contain confidential and proprietary information. If you have received this file in error, please notify us and remove it from your system and note that you must not copy, distribute or take any action in reliance on it. Any unauthorized use or disclosure of the contents of this file is not permitted and may be unlawful. AstraZeneca PLC, 1 Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, CB2 0AA, UK, T: +44(0)203 749 5000, www.astrazeneca.com